

Lecture Notes in Computer Science 5071
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Alex Gray Keith Jeffery Jianhua Shao (Eds.)

Sharing Data,
Information
and Knowledge

25th British National Conference on Databases, BNCOD 25
Cardiff, UK, July 7-10, 2008
Proceedings

13

Volume Editors

Alex Gray
Jianhua Shao
Cardiff University, School of Computer Science
5 The Parade, Cardiff CF24 3AA, UK
E-mail: {w.a.gray, j.shao}@cs.cf.ac.uk

Keith Jeffery
Rutherford Appleton Laboratory, Science and Technology Facilities Council
Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
E-mail: kgj@rl.ac.uk

Library of Congress Control Number: 2008930155

CR Subject Classification (1998): H.2, H.3, H.4

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-70503-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-70503-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12322770 06/3180 5 4 3 2 1 0

Preface

Since 1981, the British National Conferences on Databases (BNCOD) have pro-
vided a forum for database researchers to report the latest progress and explore
new ideas. Over the last 28 years, BNCOD has evolved from a predominantly
national conference into one that is truly international, attracting research con-
tributions from all over the world.

This volume contains the proceedings of BNCOD 2008. We received 45 sub-
missions from 22 countries. Each paper was reviewed by three referees, and 14
full papers and 7 posters were accepted. All the research papers and posters are
included in this volume, and they are organized into five sections: data mining
and privacy, data integration, stream and event data processing, query process-
ing and optimization, and posters.

The keynote was delivered by Monica Marinucci, EMEA Programme Direc-
tor for Oracle in R&D. She has been involved in various advanced developments
concerning Oracle, and participated in EC-funded projects as an expert, espe-
cially the CHALLENGERS special support action to propose the future of grid
computing. In her keynote presentation, she addressed the audience on the topic
of the power of data, emphasizing that the ability to store, handle, manipulate,
distribute and replicate data and information can provide a tremendous asset to
organizations. She also explored some of the latest directions and developments
in the database field, and described how Oracle contributes to them partnering
up with other leading organizations in different sectors.

BNCOD 2008 marked a special occasion in the BNCOD history – it was
the 25th conference in the BNCOD series (BNCOD was not held in 1987, 1997
and 1999 when VLDB and ICDE were held in the UK). To mark this 25th
anniversary, an International Colloquium on Advances in Database Research
was held as part of the BNCOD main conference. Leading researchers were
invited to the colloquium, and they presented and shared their latest research
with the audience. The invited papers or the abstracts of the talks presented at
the colloquium are included in this volume.

Two workshops were held alongside BNCOD 2008. The Workshop on Teach-
ing, Learning and Assessment of Databases continued to address, as in the pre-
vious years, the issues concerning the educational aspects of databases. The
papers from this workshop were published separately, and were not included in
this volume. The Workshop on Biodiversity Informatics: Challenges in Modelling
and Managing Biodiversity Knowledge aimed at advancing understanding in the
challenges involved in this important, multi-disciplinary research area. The two
best papers from this workshop are included in this volume.

Finally, we would like to thank all the authors for contributing their papers
to BNCOD 2008, the referees for their effort in reviewing the papers, the EP-
SRC for their support of the International Colloquium on Advances in Database

VI Preface

Research, the Welsh Assembly Government for hosting the reception, and the
Organizing Committee at Cardiff University for making this conference possible.

July 2008 Alex Gray
Keith Jeffery
Jianhua Shao

Conference Committees

Programme Committee

Alex Gray (Chair) Cardiff University, UK
David Bell Queen’s University, Belfast, UK
Stefan Böttcher University of Paderborn, Germany
Peter Buneman University of Edinburgh, UK
Sharma Chakravarthy The University of Texas at Arlington, USA
Richard Cooper University of Glasgow, UK
Alfredo Cuzzocrea Universita della Calabria, Italy
Barry Eaglestone University of Sheffield, UK
Suzanne Embury University of Manchester, UK
A. Fernandes University of Manchester, UK
Mary Garvey University of Wolverhampton, UK
Georg Gottlob University of Oxford, UK
Jun Hong Queen’s University, Belfast, UK
Ela Hunt Swiss Federal Institute of Technology,

Switzerland
Wendy Ivins Cardiff University, UK
Mike Jackson Birmingham City University, UK
Anne James Coventry University, UK
Keith Jeffery Rutherford Appleton Laboratory, UK
Andrew Jones Cardiff University, UK
Graham Kemp Chalmers University, Sweden
Jessie Kennedy Napier University, UK
Kavin Lu Brunel University, UK
L MacKinnon University of Abertay Dundee, UK
Nigel Martin Birkbeck, University of London, UK
Ken Moody University of Cambridge, UK
David Nelson University of Sunderland, UK
M Norrie ETH Zurich, Switzerland
Werner Nutt The Free University of Bozen-Bolzano, Italy
Norman Paton University of Manchester, UK
Alex Poulovassilis Birkbeck, University of London, UK
Mark Roantree Dublin City University, Ireland
Alan Sexton University of Birmingham, UK
Jianhua Shao Cardiff University, UK
Paul Watson Newcastle University, UK
Richard White Cardiff University, UK
John Wilson University of Strathclyde, UK
Jian Yang Macquarie University, Australia

VIII Organization

Steering Committee

Lachlan Mackinnon (Chair) University of Abertay Dundee, UK
Richard Cooper University of Glasgow, UK
Barry Eaglestone University of Sheffield, UK
Jun Hong Queen’s University, Belfast, UK
Anne James Coventry University, UK
Keith Jeffery Rutherford Appleton Laboratory, UK
David Nelson University of Sunderland, UK
Alex Poulovassilis Birkbeck, University of London, UK
Jianhua Shao Cardiff University, UK

Organizing Committee

Nick Fiddian (Chair) Cardiff University
Mikhaila Burgess Cardiff University
Wendy Ivins Cardiff University
Andrew Jones Cardiff University
Jianhua Shao Cardiff University
Gareth Shercliff Cardiff University
Alysia Skilton Cardiff University
Richard White Cardiff University

25th Anniversary Colloquium Organization

Keith Jeffery Rutherford Appleton Laboratory, UK
Jianhua Shao Cardiff University, UK

Additional Referees

Mikhaila Burgess
Grigorios Loukides

Iadh Ounis
Punitha Swarmy

Table of Contents

Keynote

The Power of Data . 1
Monica Marinucci

Data Mining and Privacy

Efficient Mining of Frequent Itemsets from Data Streams 2
Carson Kai-Sang Leung and Dale A. Brajczuk

An Empirical Study of Utility Measures for k-Anonymisation 15
Grigorios Loukides and Jianhua Shao

HLS: Tunable Mining of Approximate Functional Dependencies 28
Jeremy T. Engle and Edward L. Robertson

Sentence Ordering for Coherent Multi-document Summary
Generation . 40

C.R. Chowdary and P. Sreenivasa Kumar

Data Integration

Schema Matching across Query Interfaces on the Deep Web 51
Zhongtian He, Jun Hong, and David Bell

A Generic Data Level Implementation of ModelGen 63
Andrew Smith and Peter McBrien

Reconciling Inconsistent Data in Probabilistic XML Data Integration . . . 75
Tadeusz Pankowski

Stream and Event Data Processing

A Semantics for a Query Language over Sensors, Streams and
Relations . 87

Christian Y.A. Brenninkmeijer, Ixent Galpin,
Alvaro A.A. Fernandes, and Norman W. Paton

Load Shedding in MavStream: Analysis, Implementation, and
Evaluation . 100

Balakumar Kendai and Sharma Chakravarthy

Event-Driven Database Information Sharing . 113
Luis Vargas, Jean Bacon, and Ken Moody

X Table of Contents

Query Processing and Optimisation

Smooth Interpolating Histograms with Error Guarantees 126
Thomas Neumann and Sebastian Michel

Virtual Forced Splitting, Demotion and the BV-Tree 139
Alan P. Sexton and Richard Swinbank

A Functional Data Model Approach to Querying RDF/RDFS Data 153
João Martins, Rui Nunes, Merja Karjalainen, and
Graham J.L. Kemp

Ranking for Approximated XQuery Full-TextQueries 165
Giacomo Buratti and Danilo Montesi

Poster Papers

Role Based Access to Support Collaboration in Healthcare 177
Alysia Skilton, W. Alex Gray, Omnia Allam, Dave Morry, and
Hazel Bailey

A Peer-to-Peer Database Server . 181
John Colquhoun and Paul Watson

Checking the Integrity Constraints of Mobile Databases with
Three-Level Model . 185

Hamidah Ibrahim, Zarina Dzolkhifli, and Praveen Madiraju

Finding Data Resources in a Virtual Observatory Using SKOS
Vocabularies . 189

Alasdair J.G. Gray, Norman Gray, and Iadh Ounis

Progressive Ranking for Efficient Keyword Search over Relational
Databases . 193

Guoliang Li, Jianhua Feng, Feng Lin, and Lizhu Zhou

Semantic Matching for the Medical Domain . 198
Jetendr Shamdasani, Peter Bloodsworth, and Richard McClatchey

Towards the Automatic Generation of Analytical End-User Tools
Metadata for Data Warehouses . 203

Jesús Pardillo, Jose-Norberto Mazón, and Juan Trujillo

25th Anniversary Colloquium on Advances in
Database Research

The Hyperdatabase Project – From the Vision to Realizations 207
Hans-Jörg Schek and Heiko Schuldt

Table of Contents XI

From Schema and Model Translation to a Model Management
System . 227

Paolo Atzeni, Luigi Bellomarini, Francesca Bugiotti, and
Giorgio Gianforme

XtreemOS: Towards a Grid-Enabled Linux-Based Operating System 241
Domenico Laforenza

High-Assurance Integrity Techniques for Databases 244
Elisa Bertino, Chenyun Dai, Hyo-Sang Lim, and Dan Lin

Towards General Temporal Aggregation . 257
Michael H. Böhlen, Johann Gamper, and Christian S. Jensen

Best Papers from the Workshop on Biodiversity
Informatics: Challenges in Modelling and Managing
Biodiversity Knowledge

Distributed Systems and Automated Biodiversity Informatics: Genomic
Analysis and Geographic Visualization of Disease Evolution 270

Andrew W. Hill and Robert P. Guralnick

Visualisation to Aid Biodiversity Studies through Accurate Taxonomic
Reconciliation . 280

Martin Graham, Paul Craig, and Jessie Kennedy

Author Index . 293

The Power of Data

Monica Marinucci

EMEA Oracle in R&D Programme
ORACLE Corporation

monica.marinucci@oracle.com

Abstract. From raw data to knowledge discovery, the ability to store,
handle, manipulate, distribute and replicate data and information pro-
vides a tremendous asset to organisations, both in the commercial and
scientific and academic sector. As IT infrastructures become more and
more reliable, dynamic and flexible, applications and services require a
modular, distributed, functionality-driven and secure environment.

Continual improvements and advancements are needed to meet these
requirements and Oracle constantly innovates and pushes the limits of
the technology to make data, information and knowledge available and
exploitable. For Oracle to continue leading the database sector and to
contribute to the development of ICT, it is crucial to engage with the
R&D sector, both industrial and scientific, where existing and new chal-
lenges can be explored and novel and ground-breaking solutions found.

The talk will explore some of the latest directions and developments
in the database field and describe how Oracle contributes to them part-
nering up with other leading organisations in different sectors. Highlights
from some of the R&D projects across Europe Oracle is part of will be
also presented.

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, p. 1, 2008.
c© 2008 Oracle and/or its affiliates. All rights reserved

Efficient Mining of Frequent Itemsets
from Data Streams

Carson Kai-Sang Leung� and Dale A. Brajczuk

The University of Manitoba, Winnipeg, MB, Canada
{kleung,umbrajcz}@cs.umanitoba.ca

Abstract. As technology advances, floods of data can be produced and shared
in many applications such as wireless sensor networks or Web click streams.
This calls for efficient mining techniques for extracting useful information and
knowledge from streams of data. In this paper, we propose a novel algorithm
for stream mining of frequent itemsets in a limited memory environment. This
algorithm uses a compact tree structure to capture important contents from
streams of data. By exploiting its nice properties, such a tree structure can be
easily maintained and can be used for mining frequent itemsets, as well as other
patterns like constrained itemsets, even when the available memory space is
small.

Keywords: Data mining, frequent itemset mining, frequent patterns, tree struc-
ture, limited memory space.

1 Introduction

Data mining aims to search for implicit, previously unknown, and potentially useful in-
formation and knowledge—such as frequent itemsets—that might be embedded in data
(within traditional static databases or continuous data streams). The mining of frequent
itemsets from large traditional static databases has been the subject of numerous stud-
ies since its introduction [1]. These studies can be broadly divided into two categories
focusing functionality and performance. Regarding functionality, the central question
considered is what (kind of patterns) to mine. While some studies [3,10] in this cate-
gory considered the data mining exercise in isolation, some others explored how data
mining can best interact with the human user. Examples of the latter include constrained
mining [4,16,19,20,21] as well as interactive and online mining [13].

Regarding performance, the central question considered is how to mine the frequent
itemsets as efficiently as possible. Studies in this category focused on fast Apriori-based
algorithms [2] and their performance enhancements. Note that these Apriori-based al-
gorithms depend on a generate-and-test paradigm. They compute frequent itemsets by
generating candidates and checking their frequencies (i.e., support counts) against the
transaction database. To improve efficiency of the mining process, Han et al. [11] pro-
posed an alternative framework, namely a tree-based framework. The algorithm they
proposed in this framework (the FP-growth algorithm) constructs an extended prefix-
tree structure, called the Frequent Pattern tree (FP-tree), to capture the content of the

� Corresponding author.

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 2–14, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Efficient Mining of Frequent Itemsets from Data Streams 3

transaction database. Rather than employing the generate-and-test strategy of Apriori-
based algorithms, the FP-growth algorithm focuses on frequent pattern growth—which
is a restricted test-only approach (i.e., does not generate candidates, and only tests for
frequency). In the past few years, some other structures—such as the Co-Occurrence
Frequent-Item tree (COFI-tree) [6,7]—have been proposed to further reduce the mem-
ory consumption of the FP-tree.

Moreover, over the past decade, the automation of measurements and data collection
has produced tremendously huge amounts of data in many application areas. The recent
development and increasing use of a large number of sensors has added to this situation.
Consequently, these advances in technology have led to a flood of shared data. We are
now drowning in streams of data but starving for knowledge. In order to be able to make
sense of the streams of data, algorithms for extracting useful information and knowledge
from these streams of data are in demand. This calls for stream mining [8,12,18,19].

In recent years, several stream mining algorithms have been proposed, and they can
be broadly categorized into exact algorithms and approximate algorithms. Exact al-
gorithms (e.g., Moment [5]) find truly frequent itemsets (i.e., itemsets with frequency
not lower than the user-defined minimum frequency/support threshold minsup). How-
ever, these algorithms usually aim to mine some special subsets of frequent itemsets
(e.g., maximal, closed, or “short” itemsets) instead of all frequent itemsets. On the con-
trary, approximate algorithms (e.g., FP-streaming [9], FDPM [22]) mine all “frequent”
itemsets. They do so by using approximate procedures, which may lead to some false
positives or false negatives. In other words, these algorithms may find some infrequent
itemsets or may miss (certain frequency information of) some frequent itemsets.

When comparing with mining from traditional static databases [1,14,15,17,20,21],
mining from data streams is more challenging due to the following properties of data
streams:

1. Data streams are continuous and unbounded. To find frequent itemsets from
streams, we no longer have the luxury of performing multiple data scans. Once the
streams flow through, we lose them. Hence, we need some techniques to capture
the important contents of the streams (e.g., recent data—because users are usually
more interested in recent data than older ones) and ensure that the captured data
can fit into memory.

2. Data in the streams are not necessarily uniformly distributed, and their distribu-
tions are usually changing with time. A currently infrequent itemset may become
frequent in the future, and vice versa. We have to be careful not to prune infrequent
itemsets too early; otherwise, we may not be able to get complete information such
as frequencies of certain itemsets, as it is impossible to recall those pruned itemsets.

Hence, some natural questions are: How can we effectively capture the important con-
tents of the streams? Can we design a data structure that helps finding frequent itemsets
from streams of data? To this end, we previously proposed a tree structure—called the
Data Stream Tree (DSTree) [18]—to capture the contents of the streaming data. Like
much other existing work [9,23], we made the same realistic assumption about enough
memory space that the tree can fit into the main memory. While this assumption holds in
many real-life situations, it may not hold in some other situations due to various factors
(e.g., the nature of the streams, the window size, the minsup value). When the amount

4 C.K.-S. Leung and D.A. Brajczuk

Table 1. Our proposed DSP-tree vs. the most relevant work

FP-tree COFI-tree DSTree Our proposed
[11] [6,7] [18] DSP-tree

Goal For mining tradi-
tional static DBs

For mining traditional
static DBs

For mining data streams For mining data streams

No. of components
in each tree node

2 (item & its fre-
quency)

3 (item, its frequency, &
a participation counter)

2 (item & a list of fre-
quencies)

2 (item & a counter)

Contents of the tree Entire DB or pro-
jected DBs

DB for an item Current batches of trans-
actions from data streams

Current batches of data
stream content for an item

of available memory space is small, the DSTree may not be able to fit into the main
memory. Hence, we need a data structure that can work in environments with sufficient
memory as well as insufficient memory space. We also need an algorithm that can use
such a data structure to mine frequent itemsets for data streams.

The key contributions of this work are (i) the proposal of a simple, yet powerful,
tree structure for capturing and maintaining relevant data found in the data streams; and
(ii) the development of an efficient novel algorithm, which makes use of the developed
tree structure, for mining frequent itemsets from streams of data in a limited memory
environment. Experimental results in Section 5 show the effectiveness of our devel-
oped algorithm using our proposed tree structure in mining frequent itemsets from data
streams. Table 1 summarizes the salient differences between our proposed DSP-tree and
the most relevant alternatives.

This paper is organized as follows. In the next section, related work is described.
Section 3 introduces our DSP-tree for stream mining in a limited memory environment.
In Section 4, we discuss the applicability of the DSP-tree. Section 5 shows experimental
results. Finally, conclusions are presented in Section 6.

2 Related Work

In this section, we discuss two groups of existing structures that are relevant to our
work: (i) the COFI-tree [6,7] for mining static databases, and (ii) the DSTree [18] for
stream mining.

2.1 Mining with the COFI-Tree

El-Hajj and Zaı̈ane [6,7] proposed a Co-Occurrence Frequent-Item tree (COFI-tree)
for mining frequent itemsets from traditional static databases. The key idea of min-
ing with the COFI-tree can be described as follows. First, we scan the static database
twice. The first database scan is to find frequencies of all domain items. These items
are then sorted in descending frequency order. (As a preview, this global order of do-
main items will determine how the items are arranged in the COFI-tree.) The second
database scan is to build a global tree (more precisely, a global FP-tree) to capture the
contents of the database. Once the global tree is built, it can be used for constructing a
COFI-tree for each frequent domain item x, from which frequent itemsets containing
x can be mined. More precisely, given a user-defined minsup threshold, we construct a
COFI-tree for each domain item with frequency greater than or equal to minsup, starting

Efficient Mining of Frequent Itemsets from Data Streams 5

c:1a:5

e:1d:1

e:2

d:2

c:2

e:3:0

d:2:0 a:1:0

c:2:0

a:2:0

e:3:2

d:2:2 a:1:0

c:2:2

a:2:2

e:3:3

d:2:2 a:1:1

c:2:2

a:2:2

(a) The global tree (b) Initial COFI-tree (c) Intermediate (d) Final COFI-tree
for item e COFI-tree for item e for item e

Fig. 1. The global tree and the COFI-tree for item e (Example 1)

from the least frequent item. Items with frequency less than minsup are ignored. The
COFI-tree for item x is constructed as follows. We extract the captured transactions
from the global tree, and form a conditional database (i.e., a collection of transactions
containing x). Any locally infrequent (i.e., infrequent w.r.t. the conditional database)
items are removed. From the resulting conditional database, we build a COFI-tree for
item x. In the COFI-tree, items are arranged in ascending global frequency order of
domain items (i.e., the reverse of the global frequency order of domain items). Each
tree node contains three components: (i) the item, (ii) its frequency, and (iii) its partic-
ipation counter. The participation counter, which keeps track of the number of times
a node is participated in the mining of itemsets, is initialized to 0 and is incremented
whenever the node participates. For all non-root nodes of any COFI-tree, the values
of their participation counters match their corresponding frequencies at the end of the
mining process for the COFI-tree. At that time, all frequent itemsets containing item x
are found and the COFI-tree can be discarded. Note that frequent itemsets can be found
without recursive calls (as were required in FP-growth). To gain a better understanding,
let us consider the following example.

Example 1. Consider the following traditional static database transactions:

Transactions Contents

t1 {a, c, d, e}
t2 {a, d}
t3 {a, b}
t4 {a, e}
t5 {a, c, d, e}
t6 {c}

Let minsup be 2. Then, this database is scanned twice for the construction of a global
tree. The first database scan finds frequencies of all domain items (a:5, c:3, d:3, e:3, and
b:1). Here, a:5 represents an item a having frequency of 5. The second scan extracts
transactions from the database and puts the database contents into the global tree. See
Fig. 1(a) for the resulting global tree.

Given a user-defined minsup threshold of 2, the mining process constructs a
COFI-tree for each of the items that has a frequency ≥ minsup = 2 (i.e., items

6 C.K.-S. Leung and D.A. Brajczuk

e, d, c, and a). The COFI-tree for item e is shown in Fig. 1(b). Note that the root
node e:3:0 represents item e with frequency of 3 and an initial participation value
of 0. By traversing the left path 〈e, d, c, a〉:2, we generate non-singleton itemsets
{e, d, c, a}, {e, d, c}, {e, d, a}, {e, c, a}, {e, d}, {e, c}, and {e, a} with their frequency
counts set to 2 so far. Then, we increment the participation values for all the nodes in
this path by 2, and obtain an updated COFI-tree as shown in Fig. 1(c). For all non-root
nodes on the left path, their participation values match their corresponding frequencies
(meaning that these nodes have completed their participation in the mining process).
So, we then traverse the right path 〈e, a〉:1, increase the frequency of an existing item-
set {e, a} by 1, and increment the participation counter of {e, a}. Now, the participation
values for all non-root nodes in this COFI-tree match their corresponding frequencies
(see Fig. 1(d)). This indicates the end of the mining process for this COFI-tree. We
found all frequent itemsets {e, d, c, a}:2, {e, d, c}:2, {e, d, a}:2, {e, c, a}:2, {e, d}:2,
{e, c}:2, and {e, a}:3, and this COFI-tree can be discarded. Afterwards, we construct
and mine the COFI-trees for items d and c in a similar fashion. ��
When comparing the above (which uses the global tree and a COFI-tree for each item)
with the traditional FP-growth algorithm [11] (which recursively uses FP-trees), the
former requires less memory space because at any time during the mining process,
at most one COFI-tree (together with the global tree) is kept in the main memory.
In contrast, the usual FP-growth algorithm requires recursive construction of FP-trees
(say, for {e}-projected database, {e, d}-projected database, and then {e, d, c}-projected
database, etc.). However, the COFI-tree was designed for traditional mining, but not
for stream mining. So, using it for stream mining leads to the following problem (espe-
cially when available memory is limited): Each node of the COFI-tree contains three
components, which take up memory space. This problem is serious when the available
memory space is limited.

2.2 Mining with the DSTree

Unlike the COFI-tree, our previously proposed Data Stream Tree (DSTree) [18] is de-
signed for stream mining. Moreover, unlike the construction of the FP-tree, the con-
struction of the DSTree only requires one scan of the streaming data. The DSTree
captures the contents of transactions in each batch of streaming data (in the current
window).

The key idea of mining with DSTree can be described as follows. We first construct
a DSTree, and then use this DSTree (as the global tree) to generate smaller FP-trees for
projected databases. Note that the construction of a DSTree requires only one scan of
the data streams. The contents of the streams are captured in the DSTree. Recall from
Section 1 that data in the streams are not necessarily uniformly distributed. Because of
this and of the dynamic nature of data streams, frequencies of items are continuously
affected by the insertion of new batches (and the removal of old batches) of transactions.
Arranging items in frequency-dependent order may lead to swapping—which, in turn,
can cause merging and splitting—of tree nodes when frequencies change. Hence, in
the DSTree, transaction items are arranged according to some canonical order (e.g.,
lexicographic order), which can be specified by the user prior to the tree construction
or the mining process. In the DSTree, (i) the frequency of a node is at least as high as

Efficient Mining of Frequent Itemsets from Data Streams 7

the sum of frequencies of all its children and (ii) the ordering of items is unaffected by
the continuous changes in item frequencies.

To record and update the frequency information at each tree node, the DSTree keeps
a list of frequencies (instead of just one frequency). Each entry in this list captures the
frequency of an item in each batch. By so doing, when the window slides (i.e., when new
batches are inserted and old batches are deleted), frequency information can be updated
easily. Specifically, whenever a new batch of transactions flows in, the frequency count
of the node Y in the current batch is appended to the frequency list for Y . In other
words, the last entry of the list at node Y shows the frequency count of Y in the current
batch. When the next batch of transactions comes in, the list is shifted forward. The last
entry shifts and becomes the second-last entry; this leaves room (the last entry position)
for the newest batch. At the same time, the frequency count corresponding to the oldest
batch in the window is removed. This has the same effect as deleting from the window
the transactions in the oldest batch.

With the DSTree, mining is “delayed” until it is needed. In other words, once the
DSTree is constructed, it is always kept up-to-date when the window slides. Conse-
quently, one can mine frequent itemsets from the updated DSTree in a fashion simi-
lar to FP-growth (using minsup). More specifically, we employ a divide-and-conquer
approach. We form projected databases (e.g., {e}-projected database, {e, d}-projected
database, {e, d, c}-projected database, etc.) by traversing the paths upwards only. Since
items are consistently arranged according to some canonical order, one can guarantee
the inclusion of all frequent items using just upward traversals. There is also no worry
about possible omission or doubly-counting of items during the mining process. As the
DSTree is always kept up-to-date, all frequent itemsets in current streams can be found
effectively. To gain a better understanding of the DSTree, let us consider the following
example.

Example 2. Consider the following stream of transactions:

Batch Transactions Contents

t1 {a, c, d, e}
first t2 {a, d}

t3 {a, b}
t4 {a, e}

second t5 {a, c, d, e}
t6 {c}
t7 {a}

third t8 {a, b, e}
t9 {a, c, d}

Let minsup be 2 and let the window size w be two batches (indicating that only two
batches of transactions are kept). Then, when the first two batches of transactions in the
streams flows in, we insert the transactions into the DSTree and keep frequency counts
in a list of w = 2 entries at each node. Each entry in the list corresponds to a batch. For
example, the node a:[3,2] in Fig. 2(a) indicates that the frequency of a is 3 in the first
batch and is 2 in the second batch.

Afterwards (at time T ′), when subsequent batches (e.g., the third batch) of streaming
data flow in, transactions in those batches are then inserted in the DSTree. The list
of frequency counts shifts, the frequent counts for the oldest (i.e., the first) batch are
removed—leaving room for the frequency counts for the second and the third (i.e., the

8 C.K.-S. Leung and D.A. Brajczuk

b:[1,0] c:[1,1] d:[1,0] e:[0,1]

a:[3,2] c:[0,1]

d:[1,1]

e:[1,1]

e:[0,1]

e:[1,0]

d:[1,1]

c:[1,0]a:[2,3]

e:[1,0]d:[0,0]c:[1,1]b:[0,1]

(a) Captures the first two batches (b) Captures the 2nd & 3rd batches (at time T ′)

Fig. 2. The DSTrees (Example 2)

two newest) batches of transactions. See Fig. 2(b) for a DSTree capturing the second
and the third batches. (Note that the node d:[0,0] can be removed.)

Note that, once the DSTree is constructed, one can easily form an {x}-projected
database for some frequent item x. At any subsequent time, the usual FP-tree based
mining process (e.g., FP-growth) can be applied to these {x}-projected databases to
find frequent itemsets (i.e., itemsets with frequency counts ≥ minsup = 2). ��
While the DSTree is a novel tree structure for stream mining of frequent itemsets, it uses
FP-growth mining process for mining the projected databases. As a result, it inherits
problems from FP-growth (which is an algorithm not designed for stream mining). It
may suffer from the following problems when trying to mine with limited memory:

1. Depending on the length and distribution of items in transactions, the number of
projected databases that need to co-exist (e.g., {e}-projected databases, {e, d}-
projected databases, {e, d, c}-projected databases, etc.) may be large.

2. The assumption that all the above trees (including the DSTree and FP-trees for
recursive projected databases) fit into the memory may not always hold. There
are situations in which only some—but not all—of the trees can fit into the main
memory.

3 Mining with Our Proposed DSP-Tree in a Limited Memory
Space Environment

Recall from Section 2.1 that mining with the COFI-tree reduces memory consumption
because it does not require recursive construction of COFI-trees for sub-databases. In
other words, COFI-trees are only built for items. However, the COFI-tree was designed
for mining traditional static databases, but not data streams. As for the DSTree, it was
designed for stream mining. However, its success is partially based on a realistic as-
sumption that memory is sufficient to hold the (global) DSTree and all recursive trees
for projected databases. What if these recursive trees for projected databases do not fit
into the memory? In other words, the DSTree does not deal with limited memory space.
However, there is demand for mining streaming data with limited memory. So, our

Efficient Mining of Frequent Itemsets from Data Streams 9

questions are: Can we take advantage of these structures? If so, how can we integrate
techniques and benefits of both COFI-tree and DSTree? More specifically, we consider
the following questions: (i) Given that the COFI-tree was designed for mining static
databases, can it be used for mining data streams? (ii) Given that the COFI-tree was de-
signed to extract projected/conditional databases from the global tree, can it be used to
extract the data from paths in the DSTree? (iii) On the one hand, the COFI-tree reduces
memory consumption by not creating any subsequent trees for projected databases; on
the other hand, each node in the COFI-tree consists of three components (instead of the
two components as in the FP-tree). Can we avoid creating lots of trees and not introduce
an extra counter?

As a solution to the above questions, we propose a variant of combined COFI-tree
and DSTree—which we call Data Stream Projected tree (DSP-tree). Our proposed
DSP-tree extracts data stream information from the global DSTree. For each frequent
item, we extract transactions from batches of transactions in the current window and
form a DSP-tree capturing the transactions in each projected database.

In the DSP-tree, items are arranged in descending local frequency order (cf. as-
cending global frequency order of domain items in the COFI-tree) w.r.t. the projected
database. Note that the use of local frequency order is just a heuristic. We are not con-
fined to just this order. One can use some other ordering (e.g., canonical order, some
other user-defined ordering or constraints used in constrained mining). Regardless of
which item order do we pick, the frequency of any node in our DSP-tree is at least as
high as the sum of frequencies of its children.

Like the COFI-tree, our DSP-tree is built for a projected database for an item x.
However, unlike the COFI-tree, each tree node in our DSP-tree contains only two
components—namely, the item and a counter (cf. the three components required by
the COFI-tree). The value of this counter for each node representing an item y is ini-
tially set to the frequency of y on that tree path, and its value is decremented during
the mining process until it reaches 0. It is important to note that the DSP-tree for an
item x will be discarded once all frequent itemsets containing x are found. Hence, it is
not important to have the frequency values at each tree node at the end of the mining
process on the tree. What is important is the frequency value of each node during the
mining process. By carefully decrementing the counter value (which can be done eas-
ily), DSP-tree does not need to keep both the frequency and the participation value (as
in the COFI-tree) for each node.

To mine frequent itemsets from the DSP-tree for an item x, we start from the least
frequent item y in this DSP-tree. We locate a node containing y and follow the tree path
from y to the root. This tree path gives us an itemset {x, y} ∪ Z , where Z is an itemset
comprised of items on such a tree path. The frequency of the itemset {x, y} ∪Z equals
the value of the counter of y. Not only do we generate the itemset {x, y} ∪ Z , we also
generate all its non-singleton subsets. The frequencies of these subsets also equal the
value of the counter of y. For each subset, if it has not been generated, we add it to the
list; otherwise (i.e., the subset has already been generated), we increment the frequency
of such a subset. Then, we subtract the value of the counter of y from the counter for
each of the nodes along this tree path. By so doing, not only do we eliminate the need for
recursive constructions to trees for projected databases, we also reduce the number of

10 C.K.-S. Leung and D.A. Brajczuk

b:[1,0] c:[1,1] d:[1,0] e:[0,1]

a:[3,2] c:[0,1]

d:[1,1]

e:[1,1]

a:3

c:2

d:2

a:1

c:0

d:0

a:0

c:0

d:0

(a) The DSTree (b) Init. DSP-tree (c) Intermediate (d) Final DSP-tree
for item e DSP-tree for item e for item e

Fig. 3. The DSP-trees (Example 3)

counters needed for each node in the tree (i.e., remove the participation counter, which
was required by the COFI-tree). See the following example for deeper understanding.

Example 3. Consider the sample stream of transactions as in Example 2. We use the
same mining parameters: minsup of 2 and the window size w of two batches. The
DSTree for the first two batches is copied from Fig. 2(a) to Fig. 3(a).

Then, we start constructing a DSP-tree for item e by extracting relevant tree paths
from the DSTree. Note, from Fig. 3(b), that we do not need to put e in the DSP-tree
for e because all itemsets generated from this DSP-tree must contain e. We traverse the
path 〈a, c, d〉:2 from this tree, and generate all its seven subsets containing e—namely,
{e, a, c, d}:2, {e, a, c}:2, {e, a, d}:2, {e, c, d}:2, {e, a}:2, {e, c}:2, and {e, d}:2. The
frequency counter of each node in the path 〈a, c, d〉 is then decremented by 2, and results
in the intermediate DSP-tree shown in Fig. 3(c). Then, we traverse the path 〈a〉:1 and
properly update the frequencies of itemsets (e.g., {e, a}:2+1=3) that have already been
generated. Finally, the DSP-tree for e (as shown Fig. 3(d)) is then discarded.

Next, we construct the DSP-tree for d and then the DSP-tree for a in a similar fashion,
and find frequent itemsets {d, a, c}:2, {d, a}:2+1=3, {d, c}:2, and {c, a}:2. ��
On the surface, our proposed DSP-tree may look similar to the existing COFI-tree.
However, there are several differences. First, each node in the DSP-tree consists of
only two components (items and its counter), whereas each node in the COFI-tree con-
sists of three components (items, frequency counter and participation counter). Hence,
the latter requires 50% more memory space than the former. Second, the DSP-tree for
an item x does not contain the node x, whereas the COFI-tree for an {x}-projected
database contains x. Hence, the DSP-tree again saves some memory space. Third, the
DSP-tree uses the heuristic of arranging items in descending local frequency w.r.t. pro-
jected database along the tree path, whereas the COFI-tree arranges items in ascending
global frequency. Hence, the DSP-tree is more likely to require less memory space than
the COFI-tree because putting items in descending frequency order is more likely to
increase the chance of path sharing.

Efficient Mining of Frequent Itemsets from Data Streams 11

4 Discussion

In this section, we briefly discuss the applicability of our proposed DSP-tree. First, by
using our DSP-tree, only the global DSTree and at most one DSP-tree are required
to keep in the main memory at any time during the mining process. We are able to
find all frequent itemsets (including frequent subsets) without the need for recursive
construction of trees for projected databases. Moreover, we keep our DSP-tree small by
(i) keeping only two components (i.e., item and its counter) in each DSP-tree node and
(ii) removing x from the DSP-tree for an item x. Hence, having the DSP-tree is helpful
when the available memory space is limited.

Second, if we have sufficient memory space to store the global DSTree and the sub-
sequent FP-trees produced recursively for projected databases, we can use the DSTree/
DSP-tree combination as an alternative to DSTree/FP-trees combination. Due to the
compact representation and the non-recursive nature of DSP-tree, mining with DSTree/
DSP-tree usually requires less time than that with DSTree/FP-trees. Hence, mining with
DSTree/DSP-tree is a good mining alternative even we have sufficient memory space.

Third, although we proposed the DSP-tree for mining frequent itemsets from data
streams in a limited memory environment, the DSP-tree can be applicable to mine other
patterns such as maximal itemsets, closed itemsets, and constrained itemsets. Let us
elaborate. A frequent itemset is maximal if none of its proper supersets is frequent. One
way to find maximal frequent itemsets is to apply additional check to ensure a frequent
itemset X satisfies this extra condition/requirement that none of the proper supersets of
X is frequent. Hence, our proposed DSP-tree can be easily adapted to mine maximal
frequent itemsets from data streams in a limited memory environment.

Similarly, a frequent itemset Y is closed if none of the proper supersets of Y has
the same frequency as Y . Again, our proposed DSP-tree can be easily adapted to
mine closed frequent itemsets from data streams in a limited memory environment
by applying additional check to ensure a frequent itemset Y satisfies the extra con-
dition/requirement during the mining process.

Regarding constrained itemsets, the use of constraints in mining permits user focus
and guidance, enables user exploration and control, and leads to effective pruning of the
search space and efficient discovery of frequent itemsets that are interesting to the user.
Over the past few years, several FP-tree based constrained mining algorithms have been
developed to handle various classes of constraints. For example, the FPS algorithm [16]
supports the succinct constraints (e.g., Csucc ≡ max(S.Price) ≥ 50 which finds fre-
quent itemsets whose maximum item price is at least £50); the FIC algorithms [21]
handle the so-called convertible constraints (e.g., Cconv ≡ avg(S.Price) ≤ 20 which
finds frequent itemsets whose average item price is at most £20). The success of these
algorithms partly depends on their ability to arrange the items according to some spe-
cific order in the FP-trees. More specifically, FPS arranges items according to order M
specifying their membership (e.g., arranges the items in such a way that mandatory
items below optional items for Csucc); FIC arranges items according to prefix function
order R (e.g., arranges the items in ascending order of the price values for Cconv). Re-
call from Section 3 that our proposed DSP-tree provides users with flexibility to arrange
items in any canonical order. Hence, our proposed DSP-tree can be easily adapted to
mine constrained frequent itemsets from data streams in a limited memory environment.

12 C.K.-S. Leung and D.A. Brajczuk

5 Experimental Results

The experimental results cited below are based on data generated by the program de-
veloped at IBM Almaden Research Centre [2]. The data contain 1M records with an
average transaction length of 10 items, and a domain of 1,000 items. We set each batch
to be 0.1M transactions and the window size to be w = 5 batches.

We have also experimented with some other datasets (e.g., Mushroom data) from UC
Irvine Machine Learning Repository as well as Frequent Itemset Mining Implementa-
tions Repository. The results of these datasets were consistent with those cited below.
For lack of space, we only showed our results on the IBM data.

All experiments were run in a time-sharing environment in a 1GHz machine. The
reported figures are based on the average of multiple runs. Runtime includes CPU and
I/Os; it includes the time for both tree construction and frequent-pattern mining steps.
In the experiments, we mainly evaluated the accuracy and efficiency of the DSP-tree.

In the first experiment, we measured the accuracy of the two combinations:
(i) DSTree/FP-trees and (ii) DSTree/DSP-tree. Experimental results show that mining
with any of these two combinations gave the same mining results.

While these combinations gave the same results, their performance varied. In the sec-
ond experiment, we measured the space consumption of our proposed DSP-tree. Results
presented in Fig. 4(a) show that DSTree/DSP-tree combination required less memory
space. This is partially due to the non-recursive nature of the DSP-tree. To elaborate,
when mining with DSTree/DSP-tree, only a total of one DSTree and f − 1 DSP-trees
(where f is the number of frequent domain items) need to be generated in the entire
mining process. Only two trees—namely, one DSTree and one DSP-tree—are present
in the main memory at any time during the mining process. The size of each DSP-tree
is similar to that of the FP-tree generated for a domain item. In contrast, when mining
with DSTree/FP-trees, usually more than two trees—one DSTree and d FP-tree (where
d is the depth of the DSTree, and thus d ≤ f)—are present in the main memory at many
time moments during the mining process. Summing all these trees, the total number of
trees that are generated in the entire mining process can be as high as 1 + f(f−1)

2 .

 400

 600

 800

 1000

 1200

 1400

 1600

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

M
em

or
y

sp
ac

e
re

qu
ire

d
(in

 M
B

)

Minimum support threshold (in percentage)

Memory

DSTree/FP-trees
DSTree/DSP-trees

 40

 50

 60

 70

 80

 90

 100

 110

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
un

tim
e

(in
 s

ec
on

ds
)

Minimum support threshold (in percentage)

Runtime

DSTree/DSP-trees

(a) Memory (b) Runtime

Fig. 4. Experimental results of our proposed DSP-tree

Efficient Mining of Frequent Itemsets from Data Streams 13

Moreover, we performed some additional experiments. In the third experiment, we
measured the time efficiency of our proposed DSP-tree. Fig. 4(b) shows the runtime of
mining with our proposed DSP-tree.

In the fourth experiment, we tested with the usual experiment (e.g., the effect of
minsup). As expected, when minsup increased, the runtime decreased.

In the fifth experiment, we tested scalability with the number of transactions. The
required runtime appeared to be linearly proportional to the number of transactions in
the current window.

6 Conclusions

A key contribution of this paper is to provide the user with an algorithm for mining
frequent itemsets for streams of data, even when the available memory space is lim-
ited. The algorithm uses a compact tree structure, called the Data Stream Projected tree
(DSP-tree), to mine frequent itemsets.

It is important to note that, when the available memory space is limited, the DSTree/
DSP-tree mining process allows the user to find frequent itemsets from data streams
in this limited memory environment. When the available memory space is sufficient,
mining with the DSP-tree can be considered as an alternative to the DSTree/FP-trees
mining process. Moreover, in addition to efficient mining of frequent itemsets from
data streams, our proposed DSP-tree can also be used for efficient stream mining of
maximal itemsets, closed itemsets, and constrained itemsets.

Acknowledgement. This project is partially supported by NSERC (Canada) in the form
of research grants.

References

1. Agrawal, R., et al.: Mining association rules between sets of items in large databases. In:
Proc. ACM SIGMOD, pp. 207–216 (2003)

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. VLDB, pp.
487–499 (1994)

3. Bashir, S., Baig, A.R.: Max-FTP: mining maximal fault-tolerant frequent patterns from
databases. In: Cooper, R., Kennedy, J. (eds.) BNCOD 2007. LNCS, vol. 4587, pp. 235–246.
Springer, Heidelberg (2007)

4. Bucila, C., et al.: DualMiner: a dual-pruning algorithm for itemsets with constraints. In: Proc.
ACM KDD, pp. 42–51 (2002)

5. Chi, Y., et al.: Moment: maintaining closed frequent itemsets over a stream sliding window.
In: Proc. IEEE ICDM, pp. 59–66 (2004)

6. El-Hajj, M., Zaı̈ane, O.R.: COFI-tree mining: a new approach to pattern growth with reduced
candidacy generation. In: Proc. FIMI (2003)

7. El-Hajj, M., Zaı̈ane, O.R.: Non-recursive generation of frequent k-itemsets from frequent
pattern tree representations. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003.
LNCS, vol. 2737, pp. 371–380. Springer, Heidelberg (2003)

8. Gaber, M.M., et al.: Mining data streams: a review. ACM SIGMOD Record 34(2), 18–26
(2005)

14 C.K.-S. Leung and D.A. Brajczuk

9. Giannella, C., et al.: Mining frequent patterns in data streams at multiple time granularities.
In: Data Mining: Next Generation Challenges and Future Directions, ch. 6. AAAI/MIT Press
(2004)

10. Guo, Y., et al.: A FP-tree based method for inverse frequent set mining. In: Bell, D.A., Hong,
J. (eds.) BNCOD 2006. LNCS, vol. 4042, pp. 152–163. Springer, Heidelberg (2006)

11. Han, J., et al.: Mining frequent patterns without candidate generation. In: Proc. ACM SIG-
MOD, pp. 1–12 (2000)

12. Jin, R., Agrawal, G.: An algorithm for in-core frequent itemset mining on streaming data. In:
Proc. IEEE ICDM, pp. 210–217 (2005)

13. Lakshmanan, L.V.S., Leung, C.K.-S., Ng, R.T.: Efficient dynamic mining of constrained fre-
quent sets. ACM TODS 28(4), 337–389 (2003)

14. Leung, C.K.-S., et al.: A tree-based approach for frequent pattern mining from uncertain data.
In: Washio, T., et al. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 653–661 (2008)

15. Leung, C.K.-S., et al.: CanTree: a canonical-order tree for incremental frequent-pattern min-
ing. KAIS 11(3), 287–311 (2007)

16. Leung, C.K.-S., et al.: Exploiting succinct constraints using FP-trees. ACM SIGKDD Explo-
rations 4(1), 40–49 (2002)

17. Leung, C.K.-S., et al.: FIsViz: a frequent itemset visualizer. In: Washio, T., et al. (eds.)
PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 644–652. Springer, Heidelberg (2008)

18. Leung, C.K.-S., Khan, Q.I.: DSTree: a tree structure for the mining of frequent sets from data
streams. In: Proc. IEEE ICDM, pp. 928–932 (2006)

19. Leung, C.K.-S., Khan, Q.I.: Efficient mining of constrained frequent patterns from streams.
In: Proc. IDEAS, pp. 61–68 (2006)

20. Ng, R.T., et al.: Exploratory mining and pruning optimizations of constrained associations
rules. In: Proc. ACM SIGMOD, pp. 13–24 (1998)

21. Pei, J., et al.: Mining frequent itemsets with convertible constraints. In: Proc. IEEE ICDE,
pp. 433–442 (2001)

22. Yu, J.X., et al.: False positive or false negative: mining frequent itemsets from high speed
transactional data streams. In: Proc. VLDB, pp. 204–215 (2004)

23. Zaki, M.J., Hsiao, C.-J.: CHARM: an efficient algorithm for closed itemset mining. In: Proc.
SDM, pp. 457–473 (2002)

An Empirical Study of Utility Measures for

k-Anonymisation

Grigorios Loukides and Jianhua Shao

School of Computer Science
Cardiff University

Cardiff CF24 3AA, UK,
{G.Loukides,J.Shao}@cs.cf.ac.uk

Abstract. k-Anonymisation is a technique for masking microdata in or-
der to prevent individual identification. Besides preserving privacy, data
anonymised by such a method must also retain its utility, i.e. it must
remain useful to applications. Existing k-anonymisation methods all at-
tempt to optimise data utility, but they do so by using measures that
do not take application requirements into account. In this paper, we
empirically study several popular utility measures by comparing their
performance in a range of application scenarios. Our study shows that
these measures may not be a reliable indicator of data utility for appli-
cations in practice, and how to use these measures effectively must be
considered.

1 Introduction

Data about individuals (often termed microdata) is being increasingly used in
many applications, ranging from location-based services to data mining systems
[1]. However, publishing such microdata may lead to breach of privacy [2]. In
response, a number of techniques which attempt to mask microdata in a way
that individuals’ privacy is protected and yet data utility is preserved [3] have
been proposed. K-anonymisation is one such technique [2].

Assume that we have a table T consisting of three types of attribute: identi-
fiers (IDs), quasi-identifiers (QIDs) and sensitive attributes (SAs). IDs contain
information that may be used to identify individuals directly (e.g. phone num-
bers). QIDs are seemingly innocuous, but can potentially be linked with other
data to identify individuals (e.g. age and postcode). SAs contain sensitive infor-
mation about individuals (e.g. their shopping preferences or diagnosed diseases).
Normally, IDs are removed from microdata, but QIDs and SAs are released to ap-
plications. Thus, it is important to consider how individual identification through
QIDs may be prevented. K-anonymisation achieves this by deriving a view T ′

of T such that each tuple in the view is made identical to at least k − 1 other
tuples w.r.t. QIDs [2].

A typical k-anonymisation process involves an algorithm that performs data
grouping and value recoding (to form groups of at least k tuples and to make
QID values in each group identical), and a utility measure (to assess utility

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 15–27, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

16 G. Loukides and J. Shao

of anonymised data). Many algorithms have been proposed in the literature
[4, 5, 6, 7, 8, 9, 10], all attempting to optimise data utility by using measures
that aim to minimise information loss (a consequence of having to recode QID
values) incurred during anonymisation. However, these utility measures do not
take application requirements into consideration, and as such they may not be a
reliable indicator of how useful anonymised data is for applications in practice.

In this paper, we study some commonly-used utility measures empirically
by investigating their performance in applications. We applied several popular
methods on real data, considered aggregate query answering as an indicative
application, and constructed a range of scenarios in experiments. Utility of the
resultant anonymisations was then measured by quantifying query answering
accuracy. Contrary to existing works [8, 11], we found that these commonly-
used measures can be misleading about the level of data utility provided by
anonymised data, and thus how they may be used effectively in practice must
be considered.

The paper is organised as follows. Section 2 gives preliminaries for k-
anonymisation. Section 3 introduces several popular utility measures. We show
that these measures fail to capture utility in many application scenarios and
suggest possible remedies in Section 4. Finally, we conclude in Section 5.

2 Preliminaries

All k-anonymisation algorithms employ a heuristic for grouping data [8,10,7,5,4]
and a model for recoding QID values [5,8]. Different data grouping and recoding
strategies are shown in Figure 1. Global recoding maps the entire domain of QIDs
into generalised values, and it can be either single-dimensional (applied to the
domain of a single QID) or multi-dimensional (applied to the multi-attribute
domain of QIDs). Local recoding, on the other hand, maps values of individual
tuples into generalised ones on a group-by-group basis. Data grouping strategies
are essentially search methods that attempt to form optimal groups for recoding
by partitioning or clustering data according to some heuristics, or by following
a principle similar to the Apriori used in association rule mining. For our study,

Fig. 1. Classification of k-anonymisation algorithms

An Empirical Study of Utility Measures for k-Anonymisation 17

we used three popular methods which are representative of these strategies: a
variation of the Incognito algorithm [4] that employs an a-priori search heuristic
and single-dimensional global recoding, the Mondrian algorithm [8] that uses
median-based partitioning and multi-dimensional global recoding, and the K-
Members algorithm [10] that adopts greedy clustering and local recoding.

There are also several ways to evaluate utility of anonymised data. Some mea-
sures are based on group size [6, 8]. Intuitively, larger anonymised groups incur
more information loss, as more tuples are made indistinguishable. Other mea-
sures consider how QID values are generalised. Interval-based QID values are
typically generalised by replacing the values in a group with their range, while
discrete QID values are replaced by a more general value specified by general-
isation hierarchies [5] or by the set of values appearing in the group [7]. Thus,
the size of range (set) or the height of hierarchy used to recode values can be
used to capture data utility [9,10,7]. Intuitively, groups that contain similar QID
values (e.g. values with a small range or set size) are preferable, as less infor-
mation loss is incurred when values are recoded or generalised this way. Finally,
how well anonymised data supports an intended task such as aggregate query
answering [8, 9, 11] or classification [12] can also be used to assess data utility.
Being able to perform a task accurately using anonymised data implies that this
data is useful to this specific task. We used three popular utility measures in our
study: Discernability Measure (DM) [6] (based on group size), Utility Measure
(UM) [7] (based on range size), and Relative Error (RE) [8] (based on support
for task using aggregate query answering as an indicative application).

3 Utility Evaluation Based on Anonymised Data

Existing work on k-anonymisation measures utility of anonymised data largely
by considering the data alone and without considering application-specific re-
quirements. This may lead to unreliable assessment of utility in practice. In this
section, we introduce three commonly-used utility measures and show that they
may deliver inconsistent utility verdicts. In the following section, we analyse how
different applications may affect the accuracy of these measures, and suggest how
to use them effectively.

Definition 1 (Discernability Measure (DM) [6]). Assume that T ′ is a k-
anonymised table consisting of h groups c1, . . . , ch such that |ci| ≥ k, i = 1, . . . , h,
⋂h

i=1 ci = ∅,
⋃h

i=1 ci = T ′, and tuples of ci have the same values in each QID.
Discernability Measure of T ′ is defined as

DM =
h∑

i=1

|ci|2

where |ci| denotes the size of group ci.

Definition 2 (Utility Measure (UM) [7]). Assume that T ′ is a k-
anonymised table as defined in Definition 1 and has m QIDs, a1, . . . , am. Utility

18 G. Loukides and J. Shao

Measure of T ′ is defined as

UM = avg(
1
m

×
m∑

i=1

qd(c1.ai), . . . ,
1
m

×
m∑

i=1

qd(ch.ai))

where cj.ai denotes the set of ai values in group cj and qd(cj .ai) is calculated by

qd(cj .ai) =

⎧
⎨

⎩

max(cj .ai)−min(cj.ai)
max(Dai

)−min(Dai
) interval values

s(cj .ai)
|Dai

| discrete values

where Dai is the domain of ai, and max(cj .ai), min(cj.ai), max(Dai) and
min(Dai) denote maximum and minimum values in cj .ai and Dai respectively.
If a hierarchy H exists for ai, then s(cj .ai) is the number of leaves of the subtree
of H rooted at the closest common ancestor of the values in cj .ai. Otherwise,
s(cj .ai) is the number of distinct values in cj .ai. |Dai | is the size of domain Dai .

Definition 3 (Relative Error (RE) [8]). Assume a table T containing mi-
crodata, a k-anonymisation T ′ of T as defined in Definition 1, and COUNT(*)
query q. Relative Error of T ′ is defined as

RE =

|
∑

t∈T

p −
∑

t′∈T ′
p′|

∑

t∈T

p

where p is the probability of a tuple t in T being in the answer to q and p′ is
the probability of a tuple t′ in T ′ being in the answer to q. The probability p is
1 when t is retrieved by q and 0 otherwise, while p′ = Rq∩R

R , where Rq and R
denote the areas covered by q and the qualifying tuples in T ′, respectively, and
Rq ∩ R denotes the overlap between Rq and R.

To illustrate these measures, consider Tables 1 and 2 below.
Table 2 consists of two groups of two tuples, so DM = 22+22 = 8. For UM the

qd scores for the first and second group of Table 2 are 23−20
27−20 = 3

7 and 27−25
27−20 = 2

7

respectively. So UM =
3
7+ 2

7
2 = 5

14 . Finally, assume that our query is count(*)
where Age=25 and disease=HIV. When q is applied on Table 1 the answer is 1,

Table 1. Original data

Age Disease

20 HIV

23 Cancer

27 Obesity

25 HIV

Table 2. A 2-anonymisation of Table 1

Age Disease

[20-23] HIV

[20-23] Cancer

[25-27] Obesity

[25-27] HIV

An Empirical Study of Utility Measures for k-Anonymisation 19

Table 3. Utility measures for the CENSUS dataset

DM UM Avg RE Max RE StDev RE

Incognito 234166 0.553 0.65 1.10 0.28

Mondrian 293216 0.20 1.27 7.80 2.19

K-Members 200000 0.17 3.56 43.17 4.91

since only one tuple qualifies this query’s predicates with a probability p = 1.
When q is applied on Table 2, only the last tuple in the second group of this
table qualifies q with a probability of p′ = 1

27−25+1 = 1
3 (since Age can be 25,26

or 27). Thus, the answer to q is p′ = 1
3 , and the RE score for q is |1− 1

3 |
1 ≈ 0.67.

This suggests that 67% less tuples are likely to be retrieved from Table 2 as
answers to q, compared to the number of tuples that would have been retrieved
if q was applied on Table 1.

To see how useful these utility measures are, we applied our three bench-
mark algorithms to the CENSUS dataset1 [11, 13]. We configured this dataset
as in [11] and fixed k to 2. The version of Incognito we used includes a (c, l)-
diversity control which was configured to have c and l set to 2, and K-Members
was configured to optimise UM. For query answering accuracy, we considered
a workload of 10000 queries which retrieved random values uniformly from the
domain of a random QID and the SA as in [11]. Table 3 shows the resultant DM,
UM and RE scores.

As can be seen, these measures have not delivered consistent utility verdicts.
For example, Incognito outperformed the other two methods w.r.t. RE, but
appeared to be the worst according to UM; K-Members was the worst w.r.t. RE
but was the best for DM and UM; and Mondrian had the worst DM, but its
UM and RE scores were not the worst. Note that aggregate statistics based on
RE [8, 11] may not capture utility accurately either, as they assume that the
whole dataset is used in answering queries. Many applications often only need
a small subset of the entire anonymised dataset to answer their queries, and
unfortunately an algorithm which performs well on the whole dataset according
to some aggregate RE statistics may perform poorly on its subsets.

4 Utility Evaluation Based on Application Scenarios

In this section, we investigate three interesting cases of COUNT(*) query of the
form shown in Figure 2, where qi, i = 1, ..., m denotes a QID selected at random,
ri a randomly selected range of values from its domain, and u is a single value
from the SA Income.

These three cases are constructed to study how well the utility measures will
perform in some realistic application scenarios. First, we examine how query
answering accuracy is dependent on QIDs by using a single QID in queries

1 http:// www.ipums.org

20 G. Loukides and J. Shao

select COUNT(*)
from anonymised table
where q1 = r1, ..., qm = rm and Income= u

Fig. 2. A COUNT(*) query

(e.g. how many individuals aged 23 earn more than 20K). We then study query
answering accuracy for retrieved (subsets) of anonymised data, and we do so by
considering queries that represent “rare” cases (e.g. how many individuals aged
20 earn more than 50K). These correspond to individuals whose demographic
profile is not usual, which are expected in applications involving outlier detec-
tion, e.g. bank fraud detection or epidemiology research. Finally, we examine
how dimensionality affects query answering accuracy by using queries involving
different numbers of QIDs (e.g. how many single males aged 23 earn 30K).

4.1 Query Attribute Selection

To see how QID selection may affect query answering accuracy, consider the
anonymised table given in Table 4. This table contains two QIDs Age and Edu-
cation (number of years spent in school or university). Suppose that we have a
query (q1) similar to the one shown in Figure 2, which asks how many individu-
als aged below 24 earn 10K. q1 can be accurately answered from the first group
(the first two tuples) of Table 4. Now suppose that we have another query (q2)
asking how many individuals having Education = 5 earn 10K. The first group
of Table 4 needs to be retrieved to answer q2, but since values in Education
are generalised to [0-9], one cannot be certain about how many individuals have
exactly 5 years of education. Thus, the answer to q2 may contain an error.

This suggests that query answering accuracy may depend on which QID is
used. None of the measures discussed in Section 3 capture the impact of different
QIDs on query answering accuracy. DM measures group size, which is the same
for all QIDs. UM measures value ranges in a group, but does not consider how
these ranges may be queried. For example, the qd scores (see Definition 2) for Age
and Education for the first group in Table 4 are the same, i.e. 23−20

27−20 = 9−0
21−0 = 3

7 .
Finally, RE derives an average score for the whole table [8,11] without examining
specifically how different attributes used in queries may affect accuracy.

Table 4. A 2-anonymised table

Age Education Income

[20-23] [0-9] 10K

[20-23] [0-9] 10K

[25-27] [13-21] 25K

[25-27] [13-21] 30K

An Empirical Study of Utility Measures for k-Anonymisation 21

Fig. 3. The impact of attribute selection on query answering accuracy

In order to show the impact of QID selection on query answering accuracy, we
report RE values for each query included in our workload. Figure 3 reports the
result for queries asking the number of individuals that have a certain value in
Income and whose Age, Occupation or Marital status falls in a randomly selected
range 2. For Age, a range refers to an interval covering 19% of its domain, while
for other QIDs, a generalised value appearing on the first level of hierarchy (i.e.
a generalised value closest to the original vales) was used [11].

As can be seen, query answering accuracy is heavily dependent on the se-
lected QID. For instance, K-Members outperformed the other two methods by
an order of magnitude when Age was used, but it did derive some groups with
very poor utility when using Occupation or Marital Status in the queries. Inter-
estingly, these groups were produced during the later iterations of K-Members
algorithm, a result of its greedy strategy attempting to cluster the “good” tu-
ples for utility in earlier iterations. In contrast, Mondrian outperformed others
for queries involving Occupation. This is attributed to its partitioning strategy.
The more often data is partitioned on a QID, the more useful data is w.r.t. this
QID [14]. Furthermore, Incognito performed substantially better than the other
two when Marital Status was used. This algorithm examines whether anonymity
and (c, l)-diversity [4] hold for increasingly larger subsets of QIDs, and generates
all possible generalisations that satisfy these requirements and are consistent
with a type of single-dimensional global recoding called full-domain recoding.
However, the choice of which of these generalisations should be released is left
to the anonymiser. In our example, we chose the anonymisation with the best
UM score, in which original values in Marital status were retained. Thus, this
method performed well when queries involved this QID.

So, anonymisers should avoid “over” generalising QIDs that are more likely
to be queried in applications. This may be achieved by using unsupervised fea-
ture selection. One approach is to specify utility constraints on QIDs before
data grouping. For example, user preferences on utility of specific QIDs (e.g.
based on RE scores) may be specified as constraints and solved using a sky-
line operator [15] before anonymisation. Alternatively, feature selection can be

2 Due to space limitation, we do not report the results for Education and Gender here,
which were qualitatively similar.

22 G. Loukides and J. Shao

performed by anonymisers using attribute weighting or split attribute selection.
For example, weights can be assigned to each QID when clustering data using
K-Members, so that close values w.r.t. these attributes are preferred when form-
ing clusters [9]. Similarly, anonymisers may specify how QIDs should be chosen
for partitioning by Mondrian, thereby maximising the utility of more significant
QIDs in anonymisation.

4.2 QID Value Selection

We first discuss how QID values used in query answering may influence the
utility of anonymised data, by considering two different anonymisations of the
same dataset, as shown in Figure 4, and a workload of 10 COUNT(*) queries,
also shown in Figure 4. We also assume that the answer to every query when
applied on the original dataset (not shown here) is 1. We now show how an
answer can be estimated from anonymised data. Since all the values of Income
in the anonymised tables satisfy the queries, the number of tuples satisfying
Education = r, where r is a uniformly selected random value in [0-7], will
determine the answers to the queries. Computing the RE score for Table A (see
Section 2), we have RE = |1− 1

3 |
1 + |1− 1

5 |
1 = 22

15 . Similarly, we can compute the RE
score for Table B, which is 22

15 as well. Furthermore, Tables A and B have the
same DM and UM scores, since the sum of squared size and average range for
all groups are the same for these tables. Thus, these tables would be considered
as equally useful when these measures are used.

Now assume that a user is interested in individuals having an Education level
of 0, 1 or 2, i.e. r ∈ [0, 2]. It is easy to calculate that RE scores for Tables A and
B are now 2

3 and 4
5 respectively, implying that Table A is more useful for this

user’s task. Similarly, if another user is interested in r ∈ [5−7], the RE scores for
Tables A and B will be 4

5 and 2
3 respectively and Table B becomes more useful

in this case.
To test the effect of querying different QID values on utility, we considered a

workload containing two types of query. The first involves queries that retrieve
any value in the domain of a QID and SA. These queries were generated by

Educ. Income

[0-2] 10

[0-2] 10

[0-2] 12

[3-7] 15

[3-7] 20

[3-7] 17

[3-7] 40

[3-7] 30

Table A

Educ. Income

[0-4] 10

[0-4] 10

[0-4] 12

[0-4] 15

[0-4] 20

[5-7] 17

[5-7] 40

[5-7] 30

Table B

select COUNT(*)
from anonymised table
where Education = r and
Income between 10 and 40

COUNT(*) query

Fig. 4. Example anonymisations and query

An Empirical Study of Utility Measures for k-Anonymisation 23

Fig. 5. The impact of value selection on query answering

randomly selected queries from the workload considered in Section 4.1. Queries
of the second type retrieve some “rare” cases, i.e. a pair of QID and SA values
having a very low occurrence frequency in the table. Our workload contained
30% and 70% of each type of query respectively.

We configured all the methods as in Section 3. Since Incognito is less affected
by which values are queried (due to its full domain single dimensional global
recoding [5]), we treat it as a baseline method and measure the RE of the other
two methods relative to Incognito’s. That is, we derive R.E.I. (Relative Error
to Incognito) by replacing p (the probability of finding a tuple that satisfies
q using the original data) by pI (the corresponding probability using the data
anonymised by Incognito) in Definition 3 and normalising it by pI , i.e. REI =
|∑ t′∈T ′ pI−

∑
t′∈T ′ p′|

∑
t′∈T ′ pI

. Figure 5 reports the R.E.I. scores for queries constructed
according to the form given in Figure 2, which involved Age, Occupation or
Marital status as a QID and Income. Queries of the first type have IDs in [0,300)
in Figure 2, while those of the second type have IDs in [300-1000).

Comparing Figures 5 and 3, it is clear that the utility of anonymisations
produced by these algorithms may vary according to value selection in queries.
Mondrian was worse than Incognito (i.e. the R.E.I. scores for Mondrian were neg-
ative) for queries of the second type. This is because Mondrian splits data along
the median of QIDs, and thus the utility of anonymised data is substantially af-
fected by outliers [14]. In contrast, the relative performance of K-Members w.r.t.
Incognito was not significantly affected by the type of query used, since the neg-
ative R.E.I. scores for K-Members shown in Figure 5 correspond to queries for
which K-Members performed poorly in the experiment of Section 4.1. This is
attributed to the furthest-first seed selection strategy employed by K-Members,
which makes this algorithm relatively insensitive to outliers [14].

In general, users will want to obtain QID values from anonymised data as
accurately as possible. Neither DM or UM measures takes this requirement into
account. Some collaboration between users and anonymisers may help address
this issue. That is, a user can provide anonymisers with a sample of the queries
he intends to use. This will enable anonymisers to know which QID values are
more important and tune anonymisation methods to minimally generalise them.
LeFevre et al. have considered this approach for simple selection queries [16].

24 G. Loukides and J. Shao

However, it may not be feasible for users to disclose their queries due to privacy
concerns. For instance, an advertising company using a location-based service
may be unwilling to reveal its queries to the company providing the service. In
this case, knowledge about how QID values will be queried can be incorporated in
anonymisation by constructing “optimal” generalisation hierarchies. Such hierar-
chies can be constructed by anonymisers, either manually or automatically [17],
or given by users.

4.3 The Impact of Dimensionality on Query Answering

So far we have studied queries that involve one QID and one SA. However,
queries involving more QIDs are common in many applications, for example,
building datacubes for OLAP tasks. Therefore, we examined how the number
of QIDs involved in queries (QID dimensionality) can affect query answering
accuracy. Aggarwal [18] has already shown that k-anonymisation is difficult to
achieve without fully generalising data in high-dimensional datasets (i.e. when
there are more than 10 QIDs). We show that even when k-anonymisation is
achieved, anonymised data may not allow accurate aggregate query answering
due to a large amount of information loss incurred.

We first note that DM is insensitive to changes in QID dimensionality, since
it is based on group size. UM refers to the average group range across QIDs (see
Definition 2), thus it takes QID dimensionality into account. Figure 6 confirms
that UM scores can vary with various dimensionalities. For this experiment, we
used the same settings as in Section 4.1.

We first formally show that query answering accuracy as captured by RE mea-
sure may improve when QID dimensionality increases when certain conditions
are met, as explained in Theorem 1.

Theorem 1. Given a table T , a k-anonymisation T ′ of T and two workloads
W = {q1, . . . , ql} and W ′ = {q′1, . . . , q′l} comprised of l COUNT(*) queries
s.t. q′i ∈ W ′ has the same predicates as qi ∈ W and an additional QID pred-
icate, we have that ARE(W ′) ≤ ARE(W) when i) q′i and qi retrieve exactly the

Fig. 6. UM scores w.r.t. dimensionality

An Empirical Study of Utility Measures for k-Anonymisation 25

same tuples and ii) q′i retrieves less tuples when applied on T than on T ′, where
ARE(W ′) and ARE(W) denote the average RE scores for T ′ and all queries in
W ′ and W respectively.

Proof. The proof has been omitted for space reasons.

The result in Figure 6 w.r.t. UM may not confirm Theorem 1, as when QID
dimensionality increases from 1 to 2 in Figure 6 for Mondrian, for example. The
reason is that an increase in QID dimensionality often results in a decrease in
query selectivity. Consequently, queries retrieve a large number of tuples with
fairly small probabilities when applied on anonymised data. This makes it hard
to answer such queries accurately from anonymised data, thereby resulting in
relatively large ARE scores.

To investigate the behaviour of RE w.r.t. dimensionality, we computed RE
statistics for a workload of 10000 queries, involving an increasingly larger subset
of QIDs. Figure 7 illustrates the results for this experiment, using the same
anonymisations as those in Section 4.1.

As can be seen, an increase in QID dimensionality does not necessarily de-
crease utility, although the general trend is that RE scores increase. In fact,
the average RE score was five times larger when QID dimensionality increased
from 1 to 5, while the increase in maximum and the standard deviation of RE
scores was even larger. This is because increasing QID dimensionality in a query
tends to decrease selectivity, making it hard to answer queries accurately using
anonymised data.

This experiment suggests that it may be difficult to answer queries involving
multiple QIDs and detailed values from anonymised data accurately. In response,
Xiao and Tao [13] and Koudas et al. [19] proposed techniques which work by re-
taining original values in all QIDs, while achieving protection by limiting the way
SA values are grouped. Since QID values are not generalised, these techniques
are not affected by QID dimensionality. However, releasing original QID values
helps an attacker in learning whether an individual is present in an anonymised
dataset [13]. Thus, such techniques are only applicable when this type of infer-
ence does not constitute a privacy threat. An alternative is to develop methods

Fig. 7. The impact of QID dimensionality on query answering

26 G. Loukides and J. Shao

that control the amount of information loss to be incurred by generalisation
on each QID, as discussed in Section 4.1. For example, dimensionality reduction
techniques can be used to ensure that the utility of the most “informative” QIDs
is sufficiently preserved in anonymised data.

5 Conclusion

An increasing number of applications need to use microdata which for pri-
vacy concerns must be anonymised. While it is crucial to preserve privacy in
anonymised data, ensuring that data is still useful for intended applications is
equally important. Several measures have been proposed to capture utility of
anonymised data produced k-anonymisation methods. In this paper, we have
shown through extensive experiments that commonly used measures fail to cap-
ture utility consistently when specific workloads are considered. Based on our
analysis, we suggested how to increase data utility by taking additional steps in
anonymisation. We are currently working towards specific anonymisation tech-
niques that take user requirements into account.

References

1. Gedik, B., Liu, L.: Location privacy in mobile systems: A personalized anonymiza-
tion model. In: ICDCS 2005, pp. 620–629 (2005)

2. Sweeney, L.: k-anonymity: a model for protecting privacy. International Journal on
Uncertainty, Fuzziness and Knowledge-based Systems 10, 557–570 (2002)

3. Zhang, N., Zhao, W.: Privacy-preserving data-mining systems. IEEE Computer 40,
52–58 (2007)

4. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity:
Privacy beyond k-anonymity. In: ICDE 2006, p. 24 (2006)

5. LeFevre, K., DeWitt, D., Ramakrishnan, R.: Incognito: efficient full-domain k-
anonymity. In: SIGMOD 2005, pp. 49–60 (2005)

6. Bayardo, R., Agrawal, R.: Data privacy through optimal k-anonymization. In:
ICDE 2005, pp. 217–228 (2005)

7. Loukides, G., Shao, J.: Capturing data usefulness and privacy protection in k-
anonymisation. In: SAC 2007, pp. 370–374 (2007)

8. LeFevre, K., DeWitt, D., Ramakrishnan, R.: Mondrian multidimensional k-
anonymity. In: ICDE 2006, p. 25 (2006)

9. Xu, J., Wang, W., Pei, J., Wang, X., Shi, B., Fu, A.W.C.: Utility-based anonymiza-
tion using local recoding. In: KDD 2006, pp. 785–790 (2006)

10. Byun, J., Kamra, A., Bertino, E., Li, N.: Efficient k-anonymity using clustering
technique. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E.
(eds.) DASFAA 2007. LNCS, vol. 4443, pp. 188–200. Springer, Heidelberg (2007)

11. Xiao, X., Tao, Y.: Personalized privacy preservation. In: SIGMOD 2006, pp. 229–
240 (2006)

12. Fung, B.C.M., Wang, K., Yu, P.S.: Top-down specialization for information and
privacy preservation. In: ICDE 2005, pp. 205–216 (2005)

13. Xiao, X., Tao, Y.: Anatomy: simple and effective privacy preservation. In: VLDB
2006, pp. 139–150 (2006)

An Empirical Study of Utility Measures for k-Anonymisation 27

14. Loukides, G., Shao, J.: Clustering-based k-anonymisation algorithms. In: Wag-
ner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 761–771.
Springer, Heidelberg (2007)

15. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE 2001,
pp. 421–430 (2001)

16. LeFevre, K., DeWitt, D., Ramakrishnan, R.: Workload-aware anonymization. In:
KDD 2006, pp. 277–286 (2006)

17. Tang, L., Zhang, J., Liu, H.: Acclimatizing taxonomic semantics for hierarchical
content classification from semantics to data-driven taxonomy. In: KDD 2006, pp.
384–393 (2006)

18. Aggarwal, C.C.: On k-anonymity and the curse of dimensionality. In: VLDB 2005,
pp. 901–909 (2005)

19. Koudas, N., Zhang, Q., Srivastava, D., Yu, T.: Aggregate query answering on
anonymized tables. In: ICDE 2007, pp. 116–125 (2007)

HLS: Tunable Mining of Approximate

Functional Dependencies

Jeremy T. Engle and Edward L. Robertson

Department of Computer Science, Indiana University, Bloomington, IN 47405 USA
{jtengle,edrbtsn}@cs.indiana.edu

Abstract. This paper examines algorithmic aspects of searching for ap-
proximate functional dependencies in a database relation. The goal is to
avoid exploration of large parts of the space of potential rules. This is
accomplished by leveraging found rules to make finding other rules more
efficient. The overall strategy is an attribute-at-a-time iteration which
uses local breadth first searches on lattices that increase in width and
height in each iteration. The resulting algorithm provides many oppor-
tunities to apply heuristics to tune the search for particular data-sets
and/or search objectives. The search can be tuned at both the global
iteration level and the local search level. A number of heuristics are de-
veloped and compared experimentally.

1 Introduction

There has been a growing range of applications of Approximate Functional De-
pendencies (AFDs)1 and thus there is a growing need for an AFD-mining frame-
work that can be tailored for different applications. Such tailoring should take
into account information about a dataset in order to tune search performance
and should also tune search in terms of the nature of the rules mined. These two
considerations led to the development of the Heuristic Lozenge Search (HLS)
framework, presented in this paper. This framework is not itself heuristic but it
enables incorporation of heuristics to provide the suggested tunings.

Algorithms for mining AFDs face two dominant costs: the combinatoric cost
of searching the rule space and the cost of visiting the data to calculate the
approximate value of rules. This paper will focus on the first of these; the second
will be reported on in a later paper, as this cost is very sensitive to the way
approximateness is measured.

The first dominant cost factor, which many mining problems share, is the com-
binatoric complexity of searching a space related to the power set lattice of some
underlying set, the set of attributes in the case of AFDs [11]. Frameworks use a
variety of tools from constraint pruning to sampling in an effort to reduce the
combinatoric cost. At the core of most frameworks are traditional algorithms like
1 As its name suggests, an AFD is a rule similar to a traditional Functional Depen-

dency (FD) except that the universal requirement of the FD is relaxed. The details
of this relaxation will be covered when measures of approximation are introduced.

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 28–39, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

HLS: Tunable Mining of Approximate Functional Dependencies 29

Breadth First Search (BFS) or Depth First Search (DFS). We instead propose an
attribute-at-a-time iterative algorithm which provides efficiency and tunability.

Section 3 discusses other AFD mining algorithms and AFD applications. Sec-
tion 2 explains the conventions and definitions used in the paper. Section 4
defines a lozenge, motivates Lozenge Search, and gives the generalized Lozenge
Search algorithm. Section 5 discusses how heuristics are used to make decisions
in HLS. Section 6 discusses the experimental results, comparing the performance
of HLS to two variations of BFS.

2 Definitions and Conventions

Through out the paper we will use the following conventions.

– R is a relation schema and r is an instance of R.
– A, B, C, · · · are individual attributes of R.
– X, Y, Z, · · · are sets of attributes.
– XY means X ∪ Y .
– X → Y is a rule, a pair of subsets of R.

Definition 1. X → A is a parent of W → A when W ⊂ X and |X | = |W |+1.
Additionally child, descendant, and ancestor have their usual interpretation with
respect to parent.

Historically, an FD has more often been a declarative constraint applied to R, in
that an r that did not satisfy the constraint condition was considered, in some
sense, invalid. However, we are concerned with the situation where FD’s and
their approximations are to be discovered in a particular instance r .

The definition of FD’s is absolute, in that X → Y fails to hold in an instance of
r if there are two tuples in r that violate the condition. Real datasets, however,
often have situations where an FD “almost holds”, in that only a few violators
exist, and discovering such situations has substantial value. This leads to the
notion of Approximate Functional Dependency (AFD) and the question “How
approximate?” Answering this question requires an approximation measure.

Definition 2. An approximation measure is a function from two attribute sets,
X and Y , to [0, 1], written ϕ(X → Y), such that

(a) ϕ(X → Y) = 0 iff the FD X → Y holds,
(b) ϕ(X → Y) = 1 iff X has a single value and Y is a key for the dataset,
(c) Y ⊂ Z ⇒ ϕ(X → Y) ≤ ϕ(X → Z),
(d) X ⊂ W ⇒ ϕ(X → Y) ≥ ϕ(W → Z), and
(e) ϕ(X) is defined as ϕ(C → X) where C has a single value.

For the rest of this paper, we will use the information dependency measure
InD [3]. InD is defined so that InD(X → Y) = HXY − HX [3], where H is
Shannon’s entropy [14] measure as manifest in a database relation. As defined,
InD is unnormalized; normalization is achieved so that ϕ(X → Y) = HXY −HX

Hr
.

30 J.T. Engle and E.L. Robertson

Armstrong’s Axioms [13], imply that X → Y and X → Z iff X → Y Z and
hence it is sufficient to consider only single attribute RHSs when dealing with
FDs. This same property does not hold when dealing with AFDs [3]. None the
less, we limit our interest in the remainder of this paper to RHS’s with single
attributes. Additionally, transitivity only holds with respect to bounds that are
known for a specific ϕ. As a result we search for all minP rules instead of a
minimal cover. The search is then not for FDs, but AFDs that are “close enough”
according to a threshold, ε, and an instance r which is an implicit parameter.

Definition 3. X → C is a minimal pass rule (written minP) provided that
ϕ(X → C) ≤ ε and for all Y, Y ⊂ X, ϕ(Y → C) ≤ ε does not hold.

Definition 4. X → C is a maximal fail rule with respect to Z (maxF(Z)) pro-
vided that ϕ(X → C) > ε and for no Y, X ⊂ Y ⊆ Z, ϕ(Y → C) > ε. The
context Z is omitted if it is in fact all attributes.

The terms lattice and sublattice imply that all rules share the same RHS at-
tribute and there is some rule X → A, X ⊆ R − A which is the ultimate
ancestor of all rules in the lattice/sublattice. A ragged sublattice2 is a space
defined by a set of sub-maximal rules (boundary point rules) and all of their de-
scendants. The pruning of minP rule ancestors requires that the approximation
measure be monotone. How close an AFD is to perfect generally relies on the
interaction between the rule’s LHS and RHS. The closer a LHS or RHS grows
to an approximate key or constant the greater it alone can impact the rule’s
entropy.

Observation 1. In an arbitrary r, there are the following tendencies3:

– The closer a LHS is to a key, the better its ability to predict any RHS.
– The closer a RHS is to a constant, the better any LHS will predict it.
– The closer a RHS is to a key, the harder it is for a LHS to predict it.
– When augmenting a LHS with an attribute, the closer that attribute is to a

constant the less it will improve the LHS’s ability to predict the RHS.
– With keys on the LHS or constants on the RHS, rules have shorter LHSs.
– With keys on the RHS or constants on the LHS, rules have longer LHSs.

3 Related Work

AFD work can loosely be categorized as analysis of measures, algorithms for
AFD mining, and use of AFD’s to facilitate some task. HLS does not analyze
measures as it is independent of a specific choice. Measures applicable for AFD
mining come from a wide range of domains [6,10,7].

While there has been significant work on AFD mining frameworks, there have
been few unique algorithms. The CORDS framework [9] was developed for the
2 Not a true sublattice because join may not be defined.
3 These tendencies are based on probability theory, however without knowing the

behavior of a specific ϕ, they can not be expressed more precisely.

HLS: Tunable Mining of Approximate Functional Dependencies 31

specific purpose of using rules in query optimization. Because of this, the CORDS
system only mines rules with a single attribute on the LHS and RHS. Addition-
ally, it uses techniques such as sampling and is not concerned with the soundness
or completeness of its search because rules are merely a means not an end. There
is also work with frameworks developed in SQL to take advantage of the per-
vasiveness of SQL. This approach was originally proposed by Bell et al. [1] for
FDs and then adapted for AFDs [12]. A unique aspect was that Bell recognized
the advantage of creating a lattice for each attribute on the RHS. We refer to
this lattice approach as fixed RHS. The most popular algorithm is the TANE
[8] algorithm, whose primary focus is efficiency both in the algorithm and the
measure it uses, G3. TANE groups all lattices into a single space irrespective
of what attribute is on the RHS, which we refer to as a single space approach.
These algorithms differ slightly in motivations, but all share the same bottom-
up BFS search approach and address efficiency by adding constraints and using
techniques such as sampling.

The frameworks above leave a void in the field for an efficiency approach as
in TANE, which also addresses a domain task as in CORDS. By approaching
efficiency through a new algorithm, we can add savings to a base algorithm which
combines constraints, heuristics, and efficiency techniques; to reach new levels
of efficiency. Additionally, HLS’s iterative approach allows techniques otherwise
requiring pre/post processing to be incorporated into the algorithm itself. The
use of AFDs has been growing and diversifying. As novel uses for AFDs are
developed a mining framework’s flexibility must also grow. Similar to CORDS,
Horizontal-Vertical Decomposition [5] uses AFDs for query optimization, though
how AFDs are found is not discussed. One of the new uses is for data cleaning [2].
Another usage of AFDs is for query answering as in the the QPIAD [15] system.
Wolfe et al. when discussing QPIAD specifically mentions pruning AFDs which
have dataset keys on the LHS as a post processing step to their use of TANE.
No other system has the flexibility of HLS to address the needs of different
domains for which AFDs are used without having to alter their algorithms or
add pre/post processing steps.

4 Searching Lozenges

The use of learned information to improve performance is a common technique
in machine learning. HLS uses statistical information to guide search, but also
leverages minP rules as an information source. The main iteration of HLS is
over a sequence of lozenges. The iteration order may be fixed or dynamically
determined during execution.

4.1 Characteristics of Lozenge Search

A variety of factors are woven into HLS. Some of these may be explicitly imple-
mented, others only suggest heuristics. In no particular order:

32 J.T. Engle and E.L. Robertson

– The global order in which attributes are considered can impact how the
search is done, to improve performance, produce interesting rules first, and
facilitate top-k search.

– The ordering and pruning of attributes can be determined dynamically.
– Decisions about search strategies can be made per lozenge or per lattice.
– searchStrategy as a pluggable component allows new search algorithms to

be developed without altering the framework.
– As the size of lattices grow, so does the information for making decisions.
– minP rules are used to seed later lattices, thus pruning their ancestors.
– Searching a lozenge is sound and complete with respect to the attributes

defining that lozenge.

4.2 Composition of a Lozenge

HLS works on the premise that more decisions on a smaller scale are preferable,
lessening the impact of incorrect decisions. A lozenge is best thought of as a
space which includes multiple lattices that are all related but separate.

A lozenge is characterized by the set of all attributes seen, act, and an individ-
ual attribute, new. The active lozenge or lozenge is composed of two categories
of lattices.

(1) The lattice with act → new as the maximal rule
(2) Lattices with maximal rules (act− A)new → A where A ∈ act

These points describe the space for each lozenge, but in reality varying por-
tions of the lattices with new on the LHS will be pruned by minP rules found in
previous lozenges. Also, only rules where new ∈ LHS are searched in the lattices
defined by (2) above.

4.3 Seeding Search with maxF Rules

The boundary formed by minP and maxF rules provides starting points in
searching for further rules. In order to do this, the carryForward list stores
maxF rules. Because each lozenge adds an attribute to the space, the Z used in
the definition of maxF grows with each iteration. This means that newly found
maxF rules can potentially supersede rules on the carryForward. The lattices
with new on the LHS are seeded by augmenting each rule on carryForward
with new. We refer to these augmented rules as boundary point rules. The space
searched in a lattice is a ragged sublattice which consists of the descendants of
the set of boundary point rules. The hope is that by using Observation 1 we can
minimize the space between boundary point rules and minP rules.

5 Implementation

HLS is independent of how decisions are made. In this section we will discuss how
decisions are incorporated in HLS, and potential heuristics for these decisions.

HLS: Tunable Mining of Approximate Functional Dependencies 33

5.1 Pseudocode

1 pick attribute as new for each in R

2 for ‘‘X → A’’ in carryForward
3 add ‘‘X∪ new → A’’ to queue
4 add ‘‘act → new ’’ to queue
5 evaluateLozenge(queue)
6 add new to act

7 evaluateLozenge(queue)
8 pop first rule on queue until empty
9 if rule is minP, write to result set
10 else if rule is maxF, place on carryForward
11 else add new rules to queue using searchStrategy

5.2 Lozenge Ordering

The order in which lozenges are evaluated determines much about the behavior
of an HLS search. This is the outer iteration and is governed by the order in
which new is chosen seen in Line 1. Possible orderings include Coreness, which
selects the next attribute A with the minimal value for |median{ϕ(B) : B ∈
R}−ϕ(A)|, and Keyness, which selects an A with maximal ϕ(A). The Coreness
order generalizes pruning keys and constants by pushing them to the end of the
search. Keyness uses Observation 1 to minimize the space between boundary
point rules and minP rules. Note that when ϕ is based on InD, Keyness chooses
attributes in order of decreasing entropy. A future ordering, Differentness, would
pick the next attribute which is “most different” from some standard. Orderings
can be determined dynamically on a lozenge by lozenge basis. Further, dynamic
decisions can entail attribute pruning and accomplishing top-k search (more
work is required to characterize how the framework communicates the state of
the search to such a dynamic order evaluator).

5.3 Lozenge Search Strategies

Like the global picking of attributes, HLS does not specify the mechanism for
searching a lattice. The queue is a priority queue, so that the choice of a priority
function determines how a lattice is evaluated (for example, prioritizing by RHS
would yeild search by lattice). The enqueing operation (lines 3, 4, and 11) also
adds certain state information which can be used in priority functions, can be
used by the searchStrategy to determine whether parent or children rules
should be generated, and is used to prevent re-evaluation of rules. As long as a
searchStrategy ultimately explores all children or parents, either explicitly or
by inference, the overall HLS search is sound and complete.

Deciding how to search entails picking a search strategy – say BFS, which
could be done either top-down or bottom-up. To implement top-down BFS, line
11 would enqueue all children of the current rule. To implement bottom-up BFS,

34 J.T. Engle and E.L. Robertson

line 11 would distinguish rules placed on queue in lines 3 and 4, in that case
jumping to the bottom of the lattice to enqueue new rules new → A in the
case of line 3 and B → new, B ∈ act in the case of line 4. This means that
the effective starting point for a search is at the bottom of the lattice. Line 11
would than enqueue parents of the current rule. Note that distinct lattices could
use distinct strategies. More sophisticated search strategies could jump around
a sublattice, doing more inference and less explicit evaluation; we are evaluating
some such strategies and will develop others in the future. Experimental results
for top-down versus bottom-up are explored in Section 6.5.

6 Experimentation

Experiments were run on four datasets from the Illinois Semantic Integration
archive [4] and one artificial dataset (LowInfo). Specifically, the four university
course datasets from Reed, UWM, Washington, and WSU were used. The at-
tributes in all four datasets are fairly evenly distributed over the zero to one
entropy range. WSU is slightly larger with 16 attributes while Reed, UMW,
Washington, and LowInfo all have eleven or twelve attributes. The LowInfo
dataset has one strong approximate key attribute and all others are strong ap-
proximate constants. The single space, fixed RHS , and HLS algorithms were run
and each was done with top-down and bottom-up variants. The lozenge orderings
used were Coreness, Keyness, and a Random ordering developed as a control.

6.1 Statistics

We use five statistics to discuss the results:

1. The maximum number of rules in queue at any one time (maxQueueSize)
2. The number of rules that the search visits (numRulesVisited)
3. The number of attribute sets evaluated (numSetsEval, specific to InD)
4. The average length of the LHS for minP rules (avgLHS)
5. A improves B is the percentage for a statistic that A improves B

As stated in Section 2, InD allows reuse of known attribute set entropies,
which means that even when the numRulesVisited differ dramatically between
search variants the numSetsEval may not. If the measure used does not reuse
entropies or we did not cache attribute set entropies, the numRulesVisited
would represent the cost of the search. Though caching does save evaluations,
there is an obvious space/time trade off.

6.2 Memory Usage

The size of queue is the dominant cost in the space complexity. We assume that
each item on queue is a fixed size in memory and then analyze maxQueueSize
values to look at the “bulge”.

The experimental results in general followed the expected results. Fixed RHS
was considerable better than single space. However, HLS not only compares but

HLS: Tunable Mining of Approximate Functional Dependencies 35

Table 1. maxQueueSize values for bottom-up variant

Dataset single space fixed RHS HLS Keyness HLS Keyness improves fixed RHS

Reed 1383 388 147 62.1%

UWM 1484 358 191 46.6%

Washington 786 225 102 54.7%

WSU 13116 5245 1137 78.3%

LowInfo 2772 336 1128 -236.7%

improves over fixed RHS, except in the case of LowInfo which is discussed in the
next section.

The LowInfo dataset displayed an aberration from these results. It showed
similar improvement for single space to fixed RHS , but actually worsened from
fixed RHS to HLS. The first factor to consider is that LowInfo was artificially
created so that a large number of attributes would be needed on the LHS for
a minP rule to occur. Thus less pruning will occur and in later lozenges the
widest levels of lattices are potentially being search. The combined width of
these lattices could approach the width of single space. The second but dominant
factor is related to the discussion in Section 5.3. HLS as tested prioritizes rules
by cardinality of a LHS and then the RHS. This means that we explore levels
with the same cardinality across all lattices. Searching a lattice at a time would
avoid this problem.

6.3 Computational Efficiency: fixed RHS Vs. HLS

Single space and fixed RHS have the same computation costs so we limit the
discussion to experiments for fixed RHS and HLS. For all HLS results, Keyness
and bottom-up search were used unless otherwise stated.

Table 2 shows that HLS Keyness compares favorably with fixed RHS in terms
of numRulesVisited. Though in the Reed and Washington datasets, HLS per-
formed worse, the difference was minimal. All three datasets which showed im-
provement also had a larger avgLHS. It is only once rules reach a cardinality
of 3 that entering a ragged sublattice could provide a savings over bottom-up
search. UWM’s avgLHS increases slightly over Reed and Washington and we see
UWM performing slightly better over fixed RHS, while Reed and Washington
performed slightly worse than fixed RHS. Both WSU and LowInfo have higher

Table 2. Number of Rules Visited with Bottom-up Search

Dataset avgLHS fixed RHS
HLS HLS Keyness

Keyness Random Coreness improves fixed RHS

Reed 2.51 1178 1260 1858 2770 -7.0%

UWM 2.71 1275 1155 2369 3421 9.4%

Washington 2.49 664 704 1275 3901 -6.0%

WSU 3.6 14074 8457 24890 27581 39.9%

LowInfo 5.98 5682 3796 3792 8408 33.2%

36 J.T. Engle and E.L. Robertson

Table 3. Number of Rules Visited with Top-down Search

Dataset fixed RHS HLS Keyness HLS Keyness improves fixed RHS

Reed 27391 6633 75.8%

UWM 27691 5272 81.0%

Washington 12813 2829 77.9%

WSU 558882 74282 86.7%

LowInfo 12396 5191 58.1%

avgLHS values and we see marked savings between HLS Keyness and fixed RHS.
This supports the hypothesis that using starting point to find later rules can
improve efficiency.

The comparative results between datasets for numSetsEval are similar to
those for numRulesVisited. The fact that HLS is evaluating fewer attribute sets
means that those attribute sets and the rules that use them are never visited
in any part of HLS. This indicates that HLS finds a different and more efficient
path to minP rules compared to fixed RHS.

Though top-down searches cost more than bottom-up ones, comparing top-
down fixed RHS and top-down HLS is interesting because they are both doing
pure top-down searches, whereas a bottom-up HLS is forced to do some ragged
sublattices as top-down. We see in Table 3 that the numRulesVisited with top-
down search is significantly better using HLS Keyness compared to fixed RHS.
The numRulesVisited is explained by the fact that using carryForward allows
the search to enter lattices some place other than the top, which provides the
improved performance over fixed RHS. Though we do not show the numSetsEval
results for sake of brevity, there is little savings between fixed RHS and HLS
Keyness. This is because the lattices with new as the RHS are searched almost
completely, meaning that most attribute sets are evaluated.

6.4 Impact of Lozenge Ordering

It is clear that ordering affects efficiency as can be seen in Table 2. We only
discuss the numRulesVisited for the different heuristics, because numSetsEval
results are similar. The differences in numRulesVisited can be explained by how
well the heuristics minimize the space between boundary point and minP rules
and how closely new adheres to the second tendency in Observation 1. Keyness
incorporates both of these techniques, which is why it performs significantly
better than the Coreness and Random heuristics. These results show how the
order of attributes can effect search efficiency and that even simple heuristics
can provide significant savings. It also makes clear that in order for semantic-
oriented heuristics to be efficient good decision heuristics and the ability to do
bottom-up searches on lattices initialized from carryForward are needed.

6.5 Top-Down vs. Bottom-Up

Though datasets exist where a top-down search would be more efficient, bottom-
up predominantly is more efficient. Below we present a portion of the results from

HLS: Tunable Mining of Approximate Functional Dependencies 37

Table 4. Top-down vs Bottom-up comparison on LowInfo using HLS Coreness

Attribute 3 8 10 11

Entropy .1137 .1137 .1137 .6662

Side of rules with new LHS RHS LHS RHS LHS RHS LHS RHS

numSetsEval
Top-down 63 1 147 16 252 130 847 55
Bottom-up 63 64 154 93 336 130 847 228

numRulesVisited
Top-down 189 36 616 121 1638 340 3820 66
Bottom-up 189 127 616 247 1638 466 3820 1023

the LowInfo dataset. LowInfo is an artificial dataset specifically created to test
what happens when the avgLHS ≈ |R|

2 . The LHS and RHS columns correspond
to lattices where new is on the LHS or RHS. We separate them because as stated
the effects of an attribute are different depending on the side of the rule on which
it appears.

Though LowInfo is an artificial case, its attributes’ distributions are conceiv-
able in real datasets. Additionally, since semantic orderings might come up with
any ordering, an inefficient ordering is also conceivable. The results shown in
Table 4 are the last four lozenges for the dataset. Having an approximate key as
new for the last lozenge is potentially a worst case scenario in HLS with bottom-
up search. We see this with attribute 11. With bottom-up HLS search the lattice
with new on the RHS is searched bottom-up, and ragged sublattices with new on
the LHS are searched in a top-down manner. Guided by Observation 1, we see
an approximate key emphisizes the tendencies which push minP rules farther
away from these starting points. Added to this is that in the last lozenge the
space is the largest of any lozenge. In the case of attribute 11, the avgLHS when
it is on the RHS is 9, which explains why top-down searching proves more effi-
cient. We see that results for the approximate constants do not as closely follow
what would be expected given Observation 1. Specifically, top-down searching
out performs bottom-up even with an approximate constant on the RHS. This
is explained by the fact that every attribute on the LHS is also an approximate
constant, and that LowInfo was specifically designed so that the approximate
constants would not easily determine each other. It is important to recall that
the LHS portion of a lozenge potentially contains a lattice for each attribute in
act, whereas the RHS portion is only a single lattice, which accounts for the dif-
ferences in scale. Though in this example always picking top-down would lead to
the optimal efficiency in terms of decisions, it is more likely in real datasets that
some combination of top-down and bottom-up searches will lead to the optimal
set of decisions.

7 Conclusion

HLS shows that search can be improved by using information about a dataset.
We also showed how HLS could incorporate techniques like attribute analysis,
typically done with preprocessing, as a search feature and allow decisions to

38 J.T. Engle and E.L. Robertson

be dynamic. Additionally, searching the top-k lozenges is done in a sound and
complete way, where k can result from a decision process instead of a predeter-
mined constant. Designed to move away from the idea that search is uniform,
HLS provides a framework into which domain specific modules can be plugged,
in order to adapt search to meet user requirements. Even with simple heuristics
HLS showed strong comparative performance.

A number of variations to HLS will potentially improve efficiency and make
that efficiency more robust, but reaching this potential will require further
work. In particular, a better search strategy has potential for greatly improving
performance when semantic-oriented orderings such as Coreness are used. We
demonstrated how HLS can improve space complexity even over fixed RHS, but
scenarios remain which must be addressed. HLS also allows new optimizations
for evaluating approximation measures based on using act instead of R. We
demonstrated how Keyness could make HLS competitive, and we saw that when
using semantic oriented heuristics efficiency was a concern. To improve search we
can develop starting point decision heuristics, the ability to make starting point
decisions for ragged sublattices, and continue to explore orderings which could
maximize efficiency. Lastly, constraints and efficiency techniques from other AFD
mining systems could be adapted for HLS.

Acknowledgement

We would like to thank Catharine Wyss for discussions concerning the pruning
of key or constant attributes and the need for a generalized approach.

References

1. Bell, S., Brockhausen, P.: Discovery of constraints and data dependencies in
databases (extended abstract). In: European Conference on Machine Learning,
pp. 267–270 (1995)

2. Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional func-
tional dependencies for data cleaning. In: ICDE, pp. 746–755. IEEE, Los Alamitos
(2007)

3. Dalkilic, M.M., Robertson, E.L.: Information dependencies. In: PODS, pp. 245–253
(2000)

4. Doan, A.: Illinois semantic integration archive,
http://pages.cs.wisc.edu/∼anhai/wisc-si-archive/

5. Giannella, C., Dalkilic, M., Groth, D., Robertson, E.: Improving query evaluation
with approximate functional dependency based decompositions. In: Eaglestone,
B., North, S.C., Poulovassilis, A. (eds.) BNCOD 2002. LNCS, vol. 2405, pp. 26–41.
Springer, Heidelberg (2002)

6. Giannella, C., Robertson, E.: On approximation measures for functional depen-
dencies. Inf. Syst. 29(6), 483–507 (2004)

7. Hilderman, R., Hamilton, H.: Knowledge discovery and interestingness measures:
A survey. Technical Report 99-04, University of Regina (1999)

http://pages.cs.wisc.edu/~anhai/wisc-si-archive/

HLS: Tunable Mining of Approximate Functional Dependencies 39

8. Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: TANE: An efficient algo-
rithm for discovering functional and approximate dependencies. The Computer
Journal 42(2), 100–111 (1999)

9. Ilyas, I.F., Markl, V., Haas, P., Brown, P., Aboulnaga, A.: Cords: automatic dis-
covery of correlations and soft functional dependencies. In: SIGMOD Proceedings,
pp. 647–658. ACM Press, New York (2004)

10. Kivinen, J., Mannila, H.: Approximate inference of functional dependencies from
relations. In: ICDT, pp. 129–149. Elsevier Science Publishers, Amsterdam (1995)

11. Mannila, H., Räihä, K.-J.: On the complexity of inferring functional dependencies.
Discrete Applied Mathematics 40(2), 237–243 (1992)

12. Matos, V., Grasser, B.: Sql-based discovery of exact and approximate functional
dependencies. In: ITiCSE Working Group Reports, pp. 58–63. Association for Com-
puting Machinery, New York (2004)

13. Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill
Higher Education, New York (2002)

14. Shannon, C.E.: A mathematical theory of communication. Bell System Tech. J. 27,
379–423, 623–656 (1948)

15. Wolf, G., Khatri, H., Chokshi, B., Fan, J., Chen, Y., Kambhampati, S.: Query
processing over incomplete autonomous databases. In: VLDB Proceedings. VLDB
Endowment, pp. 651–662 (2007)

Sentence Ordering for Coherent Multi-document

Summary Generation

C.R. Chowdary and P. Sreenivasa Kumar

Department of Computer Science and Engineering
Indian Institute of Technology Madras

Chennai 600 036, India
{chowdary,psk}@cse.iitm.ac.in

Abstract. Web queries often give rise to a lot of documents and the user
is overwhelmed by the information. Query-specific extractive summariza-
tion of a selected set of retrieved documents helps the user to get a gist
of the information. The current extractive summary generation systems
focus on extracting query-relevant sentences from the documents. How-
ever, the selected sentences are presented either in the order in which the
documents were considered or in the order in which they were selected.
This approach does not guarantee a coherent summary. In this paper,
we propose incremental integrated graph to represent the sentences in a
collection of documents. Sentences from the documents are merged into
a master sequence to improve coherence and flow. The same ordering is
used for sequencing the sentences in the extracted summary. User evalu-
ations indicate that the proposed technique markedly improves the user
satisfaction with regard to coherence in the summary.

Keywords: Summarization, Coherent, Incremental Integrated Graph,
Ordering of Sentences.

1 Introduction

Currently, the World Wide Web is the largest source of information. Huge
amount of data is being added to the Web every second. Search engines retrieve
a set of web pages which are relevant to the topic of interest. Often the infor-
mation related to the topic will be distributed across the web pages. To get the
complete information on a topic we may have to go through several web pages.
It is a tedious task for the user to study huge amount of data present across
the web pages. Most of the times user’s need does not demand the complete
reading of each web page. If the information which is of user’s interest, present
across multiple web pages is retrieved and arranged in appropriate manner then
it would be of great help to the user. “Multiple web page summarization”, is one
such useful method which saves lot of time of the user. There are two ways in
which summarization systems can be classified - Abstractive and Extractive.

In abstractive summary generation[17,7,15], the input will be a set of docu-
ments, which can be obtained from the web for the query given by the user. The

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 40–50, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Sentence Ordering for Coherent Multi-document Summary Generation 41

output would be the abstract of the documents, generated with the aid of natural
language processing (NLP) algorithms. In extractive summary generation[14,5],
the input is same but the output is obtained by extracting the sentences from
the documents and arranging them in a meaningful way to make a readable
summary. Query specific multiple document summary takes us one step further
by generating summaries which are biased towards the given query. Statistical
measures are used by the systems that generate extractive based summaries.
Recently graph based models[16] are used in extraction based summarization.

In graph based models each sentence of the document is considered as a node in
the graph and the edges are present between sentences, if the sentences are related.
To find the degree of relatedness, measures like cosine similarity are used. In a
graph the neighbouring nodes(nodes which are adjacent) are highly related to each
other and it is highly probable that these nodes contain the content which is very
much similar and coherent. A node will be given importance based on the content
it contains and the content that its neighboring nodes contain.

In this paper we deal with the problem of arranging the extracted nodes from
the graph in a way that makes the summary coherent and meaningful. To achieve
this task we construct an Incremental Integrated Graph(IIG) and the nodes se-
lected for the summary are arranged in the IIG order. In Section 2 we discuss the
related work. Framework is discussed in Section 3. We discuss the algorithm to
construct the Incremental Integrated Graph in Section 4 . In Section 5 we discuss
the MEAD system, with which we compare our results and the corpus used for
our experimentation and we discuss the performance of our system. Conclusions
are given in Section 6.

2 Related Work

MEAD[14] introduced centroid based summarization. It deals with both single
and multi document summarization. Centroid is calculated by calculating the
average of tf*idf, of all the words across the documents in a cluster. A sentence
is said to be important if its similarity is close to the centroid. In the generated
summary, sentences are arranged in the document order and the documents
are arranged chronologically. CLASSY[5] uses HMM(Hidden Markov Model) for
giving score to sentences. Pivoted QR algorithm is used to form a summary.
In the graph based models like[12] each sentence is considered as a node and
the score is given to a sentence based on the lines similar to PageRank[13] or
HITS[6]. Edge weight is given by considering the degree of overlap between the
two sentences.

In [11] both single and multi-document summary are discussed. For single
document summary it uses DR-LINK[9] to select MRS(most relevant section)
and is presented to the user. In multi-document summary it uses DR-LINK[9] to
select MRP(Most Relevant Paragraph) from the MRS. [4] uses cosine similarity
measure to give importance to the sentence in the document based on the query.
MMR re-ranking is used to select the sentences into the summary. While gen-
erating summary, sentences are arranged in document order or MMR-reranking

42 C.R. Chowdary and P. Sreenivasa Kumar

order. In [10] important units of text are identified and the relationship among
them is exploited for summarizing similarities and differences in a pair of related
documents using a graph representation for text.

In [8] both event-based summary (to select and organize the sentences in a
summary with respect to the events or the sub-events that the sentences de-
scribe) and extractive summary are integrated. In [2] sentence ordering is ad-
dressed but is highly oriented towards news articles and the ordering of sentences
is based on the number of times it is preceding or following the other sentences
in the documents(a sentence si precedes sentence sj if in majority documents
si precedes sentence sj). All the approaches mainly concentrate on retrieving
relevant sentences from the documents and very less attention is given to the
meaningful arrangement of the sentences within the selected sentences. Though
[2] specifically addresses this problem, it mainly focuses on news documents. In
our approach we arrange the nodes of documents by taking the context into
consideration, due to which coherence is preserved.

3 Framework

Each document is considered as a graph. Sentences are considered as nodes
and edges in the document reflect the degree of similarity between nodes. We
use cosine similarity to measure the similarity between nodes. An edge weight
w(eij) quantifies contextual similarity between sentences si and sj . It is com-
puted using the Equation 1[3]. Stop words(e.g. a, an, the etc.) are removed while
calculating similarity.

w(eij) = sim(−→si ,−→sj) =
−→si .−→sj

|−→si ||−→sj | (1)

where −→si and −→sj are term vectors for sentences si and sj respectively. The weight
of each term t is calculated using tft ∗ isft where tft is the term frequency and
isft is inverse sentential frequency i.e., log(n

nt
) where n is the total number

of sentences and nt is number of sentences containing the term t in the graph
under consideration. Stop words are removed and remaining words are stemmed
before computing these weights. A low similarity value reflects a weak contextual
relationship(i.e. sentences that are not related).

4 Incremental Integrated Graph Construction

In this section we explain the algorithms for the construction of the IIG (In-
cremental Integrated Graph). Input to Algorithm 1 is a set of documents in
the decreasing order of the number of sentences and the output is the IIG. The
document with the maximum number of nodes(D0)1 is taken as the base graph.
1 Di represents ith document, dj represents jth sentence in a given document and nk

represents kth sentence in the Incremental Integrated Graph.

Sentence Ordering for Coherent Multi-document Summary Generation 43

Each node of the base graph is assumed to form a context. We arrange the base
graph nodes in a manner by which the ith node of the base graph will be ar-
ranged in the position i ∗ gap i.e., position(ni) = i ∗ gap. Here, the parameter
gap is used to control the number of positions available between a pair of base
graph nodes for placing new nodes. A node is said to be a context node if it is
positioned at integral multiples of gap. Each node from the other documents is
added in the neighbourhood of one of the context nodes. Adding a node y in
the neighbourhood of a context node x indicates that y has maximum similarity
with x and it is above α(0.1). We then denote x as contextOf(y). We call the col-
lection of nodes whose position lies between position(x) and position(x) + gap
as the neighbourhood of x. If we consider gap as 100 and 0 100 101 102 200
201 202 300 as nodes in IIG then 0,100,200,300 are context nodes. 201 and 202
are in the context of 200, 101 and 102 are in the context of 100. 101 to 199
are the neighbourhood of 100 and 201 to 299 are the neighbourhood of 200.
In this case, position(y) will be greater then the position(x) and less then the
position(x) + gap, as explained in Algorithm 2. If the similarity is below α,
then the node is added as a new context node as explained in Algorithm 3.

Algorithm 1. Incremental Integrated Graph Construction
1: Input: Set of documents in the decreasing order of their size(number of sentences)
2: Output: Incremental Integrated graph IIG
3: Incremental Integrated Graph IIG = D0 {//base graph}
4: Set position of each node in IIG as position(nk) = k ∗ gap (0 ≤ k ≤ |D0|)
5: i = 1
6: while i ≤ number of Documents do
7: for each node d ∈ Di considered in the document order find the context node,

called MaxSimilarContextNode, with which it is having maximum similarity
do

8: if sim(d,MaxSimilarContextNode) ≥ α then
9: Insert d in the context of MaxSimilarContextNode as explained in Algo 2

10: else
11: Set d as the new context in IIG as explained in Algo 3
12: end if
13: end for
14: i + +
15: end while

Though it can be argued that gap should be large enough to accommodate all
the nodes from all other documents between a pair of base graph nodes(worst-
case scenario), in practice it is highly unlikely to be so. From our empirical
studies, we observe that gap value of twice the number of documents in the
corpus is sufficient. In any case, it can be set to an appropriate value after
experimenting with the corpus of interest.

In Algorithm 3 we deal with two cases - first one is when the node to be added
as a context is the first node of a document and the second one is when the node
to be added is not the first node of a document. In the first case, we add the node

44 C.R. Chowdary and P. Sreenivasa Kumar

Algorithm 2. Insertion of a node in the neighbourhood of a context node
1: Input: Partially constructed IIG, context node(c) and the node to be inserted(d)
2: Output: IIG with the node inserted in the Context
3: i = position(c)
4: while (There is a node at position i) AND (sim(c, NodeAtPosition(i)) ≥ sim(c, d))

do
5: i + +
6: end while
7: Increment the position of all the neighbouring nodes of c which are having position

numbers greater than or equal to i by one
8: Place d at position i

as a context node, following the current last context node of the IIG and position
it as given in Line 4 of algorithm. All the non-context nodes are re-arranged, if
necessary. If the non-context node x is more similar to the newly added context
node c than to its current context, then x is shifted to the neighbourhood of c.
In the second case we add the node as a context immediately following its parent
node. x is parent of y if y follows x in the document. All the non-context nodes
are re-arranged, if necessary.

The parameter gap is the difference of the positions of two consecutive context
nodes in IIG. The context nodes will be positioned at 0, 1 ∗ gap, 2 ∗ gap, 3 ∗ gap
etc. in IIG. gap is chosen in such a way that it is large enough to accommodate
the nodes falling in a context. Figure 1 illustrates the working of the algorithm

Algorithm 3. Adding a context to the partially constructed IIG
1: Input: Partially constructed IIG and the node(d) to be inserted as the context
2: Output: IIG with d included
3: if d is the first node in the document then
4: ADD d as a new context node to IIG following the current last context node and

Set position(d) = position(CurrentLastContextNodeOfIIG) + gap
5: else
6: i = �position(parent(d))/gap�*gap + gap {//for gap = 100, if parent(d) is at

213 then i will be assigned 300 }
7: for each node n starting from position i do
8: position(n) = position(n) + gap
9: end for

10: Insert d as a context node and Set position(d) = i
11: end if
12: for each non context node n do
13: if sim(n, d) > sim(n, CurrentContext) then
14: Delete n and place it in the context of d using Algo 2
15: Re-arrange the nodes following the non context node till the next context node

{//decrease the position value by 1}
16: end if
17: end for

Sentence Ordering for Coherent Multi-document Summary Generation 45

nodes of base graph in doc order 0 1 2 3 4

node positions of base graph will be : 0 100 200 300 400

Arrangement before insertion of a node be : 0 1 2 100 200 201 300 400 401

Arrangement after the insertion of a node x in the context of 100 :
 0 1 2 100 101(x) 200 201 300 400 401

Arrangement after the insertion of a node x as a new context, with x being first
 node of a document : 0 1 2 100 200 201 300 400 401 500(x)

Arrangement after the insertion of a node x as a new context, with x being non
 first node of a document and x’s parent be positioned at 201 :
 0 1 2 100 200 201 300(x) 400(300 previously) 500(400) 501(401)

 a

b

c

d

e

f

g
After steps e, f we have to calculate the similarity of all non base graph nodes
with x and choose there context accordingly. For example let 1 be more
 similar with x : 0 1(2previously) 100 200 201 300(x) 301(2) 400 500 501

Fig. 1. Illustration of algorithm with gap as 100

through an example. A base graph is taken with 5 nodes(0,..,4) as shown in
Figure 1(a). We have Figure 1(b) after positioning the base graph nodes as
explained in Algorithm 1. In Figure 1(c) 1, 2, 201 and 401 are non base graph
nodes. Figure 1(d) illustrates the arrangement after the insertion of x in the
context of 100. Figure 1(e) and 1(f) illustrates the insertion of node x as a new
context. Figure 1(g) illustrates the re-arrangement(based on similarity measures)
of the non base graph nodes after the insertion of the new context as explained
in Algorithm 3.

The extractive summarizer MEAD is used to extract sentences on the given
cluster of documents. IIG is constructed on the same set of documents. The
position numbers of extracted sentences in IIG are determined. These sentences
are arranged in the increasing order of their position numbers to generate the
summary as per the proposed approach. For e.g., if MEAD extracts s1, s2, s3, s4

and s5 sentences as part of the summary, if the corresponding positions are
101,2,300,4 and 10 respectively then the summary given by IIG approach would
be s2, s4, s5, s1 and s3.

5 Experimental Setup and Results

We have implemented IIG construction in Java. We took α value as 0.1 and gap
as 100 for our experiments. We compared our system with MEAD[14]. MEAD
computes a score for each sentence from the given cluster of related documents

46 C.R. Chowdary and P. Sreenivasa Kumar

Table 1. Query: “Beckham moving to Barcelona”

MEAD
[1] Beckham appeared resigned to being sold.
[2] BARCELONA, Spain, June AFP - Joan Laporta, the man who wants to bring
England skipper David Beckham to Barcelona in a 50-million-dollar deal, became
the president of the Spanish giants on Sunday and insisted that he will continue his
campaign to sign the Manchester United star.
[3] However Eriksson added that wherever Beckham played would make no difference
to his role for England.
[4] ROME, May AFP - Champions League winners AC Milan want to sign Manchester
United midfielder David Beckham for next season, according to Friday’s Gazzetta
dello Sport.
[5] But just weeks ago, Beckham issued a statement saying he wanted to remain at
Old Trafford.

IIG
[2] BARCELONA, Spain, June AFP - Joan Laporta, the man who wants to bring
England skipper David Beckham to Barcelona in a 50-million-dollar deal, became
the president of the Spanish giants on Sunday and insisted that he will continue his
campaign to sign the Manchester United star.
[4] ROME, May AFP - Champions League winners AC Milan want to sign Manchester
United midfielder David Beckham for next season, according to Friday’s Gazzetta
dello Sport.
[3] However Eriksson added that wherever Beckham played would make no difference
to his role for England.
[5] But just weeks ago, Beckham issued a statement saying he wanted to remain at
Old Trafford.
[1] Beckham appeared resigned to being sold.

by considering a linear combination of several features. We have used centroid
score, position and cosine similarity with query as features with 1,1,10 as their
weights respectively. MMR(Maximum Marginal Relevance) re-ranker, which is
provided by MEAD is used for redundancy removal with a similarity threshold
of 0.6.

Our focus in this paper is on arranging the extracted sentences from the
documents in a way that makes it more readable. MEAD was used to extract
the sentences from the documents for the given query. The passage so obtained is
compared to the passage generated by rearranging the same sentences as per our
algorithm. Table 1 shows the summaries generated by MEAD and IIG for the
query “Beckham moving to Barcelona”. Table 2 shows the summaries generated
for the query “Jackson ruling on Microsoft”.

We used the publicly available database provided by University of Michigan[1].
We experimented on eight different topics. Each topic was described in 10 to 14
documents. The nature of the documents is that they discuss particular topic
like global warming, water on mars etc. If we consider any two documents(within
the cluster), most of the time it so happens that at least 30% of one document
will be having same information as the other.

Sentence Ordering for Coherent Multi-document Summary Generation 47

Table 2. Query: “Jackson ruling on Microsoft”

MEAD
[1] ”This ruling turns on its head the reality that consumers know,” he said.
[2] However, a ruling on sanctions, the last stage of the trial, is not likely before
October.
[3] In fact, he said, Jackson’s approach could make the ruling ”bulletproof” on appeal.
[4] ”Microsoft placed an oppressive thumb on the scale of competitive fortune, thereby
effectively guaranteeing its continued dominance,” U.S.
[5] District Judge Thomas Penfield Jackson wrote in a sweeping decision that said
Microsoft violated the Sherman Act, the same law used to break up monopolies from
Standard Oil to AT& T.
[6] The judge issued his ruling Monday after the stock market closed, but word that it
was coming caused Microsoft stock to drop by more than 15 a share to 90.87, costing
Gates about 12.1 billion in paper losses.

IIG
[5] District Judge Thomas Penfield Jackson wrote in a sweeping decision that said
Microsoft violated the Sherman Act, the same law used to break up monopolies from
Standard Oil to AT&T.
[2] However, a ruling on sanctions, the last stage of the trial, is not likely before
October.
[4] ”Microsoft placed an oppressive thumb on the scale of competitive fortune, thereby
effectively guaranteeing its continued dominance,” U.S.
[1] ”This ruling turns on its head the reality that consumers know,” he said.
[6] The judge issued his ruling Monday after the stock market closed, but word that it
was coming caused Microsoft stock to drop by more than 15 a share to 90.87, costing
Gates about 12.1 billion in paper losses.
[3] In fact, he said, Jackson’s approach could make the ruling ”bulletproof” on appeal.

We have given the summaries generated on the eight topics to 51 volun-
teers(under graduate and graduate students) for evaluation. While giving the
summary document, we randomized the arrangement of the order in which the
summary generated by MEAD and IIG are placed in the file. This precaution is
essential as the user selects one of the two summaries as the answer and the one
which he reads first may not be satisfactory to him, but at this point we have
to remember that after going through the first summary, he will get an idea of
the subject and then while going through the second one that impact will be
there definitely. So for half of the summary pairs MEAD preceded IIG and for
the remaining half IIG preceded MEAD.

Table 3. Choice for each query

System/QueryQ1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

MEAD 5 8 37 23 23 21 22 15

IIG 46 43 14 28 28 30 29 36

48 C.R. Chowdary and P. Sreenivasa Kumar

Fig. 2. Number of volunteers who voted for (MEAD,IIG)

Fig. 3. Graph showing the volunteers choice

For each topic, the volunteers were asked to select the summary that is more
coherent than the other. Table 3 shows for each query, the number of volunteers
that have chosen MEAD/IIG as the satisfactory system. For example, five vol-
unteers have chosen MEAD system for query one(Q1) and the rest forty six has
selected IIG. Figure 2 shows a graph in which (a, b) on X-axis indicates that
for ”a” of 8 queries, MEAD was chosen and for remaining (8 − a) i.e., ”b” IIG
was chosen as satisfactory. The Y-axis indicates the number of volunteers corre-
sponding to each (a, b). From the Figure 2 it is clear that only two out of fifty one
volunteers feel that MEAD is giving better coherence than IIG. Figure 3 shows
the volunteers choice for both MEAD and IIG. Figure 3 shows for each individ-
ual volunteer, for how many queries the IIG(white bar) and the MEAD(black
bar) was chosen as a system that gives better summary.

Sentence Ordering for Coherent Multi-document Summary Generation 49

6 Conclusions

In this paper, we have proposed Incremental Integrated Graph as a structure to
order the sentences in a cluster of documents. IIG is constructed incrementally
with the document containing largest number of nodes taken as a base graph.
Each node in base graph is considered as a context. All the nodes of other
documents are added to the context if they have similarity with context otherwise
a new context is formed with the new node as a context. Sentences selected by
the extractive query-specific summarizer are then ordered according to their
position in IIG. Experimental results show that our approach has improved the
quality of the extracted summary in terms of coherence.

References

1. CSTBank Corpus Available at,
http://tangra.si.umich.edu/clair/CSTBank/phase1.htm

2. Barzilay, R., Elhadad, N., McKeown, K.R.: Sentence ordering in multidocument
summarization. In: HLT 2001: Proceedings of the first international conference
on Human language technology research, pp. 1–7. Association for Computational
Linguistics, Morristown, NJ, USA (2001)

3. Frakes, W.B., Baeza-Yates, R.A. (eds.): Information Retrieval: Data Structures &
Algorithms. Prentice-Hall, Englewood Cliffs (1992)

4. Goldstein, J., Carbonell, J.: Summarization (1) using mmr for diversity - based
reranking and (2) evaluating summaries. In: Proceedings of a workshop, Baltimore,
Maryland, pp. 181–195. Association for Computational Linguistics, Morristown,
NJ, USA (1996)

5. Schlesinger, J.D., Conroy, J.M., Stewart, J.G.: CLASSY query-based multi-
document summarization. In: Proceedings of the Document Understanding Con-
ference (DUC) (2005)

6. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J.
ACM 46(5), 604–632 (1999)

7. Knight, K., Marcu, D.: Statistics-based summarization - step one: Sentence com-
pression. In: Proceedings of the Seventeenth National Conference on Artificial Intel-
ligence and Twelfth Conference on Innovative Applications of Artificial Intelligence,
pp. 703–710. AAAI Press / The MIT Press (2000)

8. Li, W., Wu, M., Lu, Q., Xu, W., Yuan, C.: Extractive summarization using inter-
and intra- event relevance. In: ACL 2006: Proceedings of the 21st International
Conference on Computational Linguistics and the 44th annual meeting of the ACL,
pp. 369–376. Association for Computational Linguistics, Morristown, NJ, USA
(2006)

9. Liddy, E.D., Paik, W., Yu, E.S., McVearry, K.A.: An overview of dr-link and its
approach to document filtering. In: HLT 1993: Proceedings of the workshop on
Human Language Technology, pp. 358–362. Association for Computational Lin-
guistics, Morristown, NJ, USA (1993)

10. Mani, I., Bloedorn, E.: Multi-document summarization by graph search and match-
ing. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence
(AAAI 1997), pp. 622–628. AAAI/IAAI (1997)

http://tangra.si.umich.edu/clair/CSTBank/phase1.htm

50 C.R. Chowdary and P. Sreenivasa Kumar

11. McKenna, M., Liddy, E.: Multiple & single document summarization using dr-link.
In: Proceedings of a workshop, Baltimore, Maryland, pp. 215–221. Association for
Computational Linguistics, Morristown, NJ, USA (1996)

12. Mihalcea, R., Tarau, P.: Multi-Document Summarization with Iterative Graph-
based Algorithms. In: Proceedings of the First International Conference on Intel-
ligent Analysis Methods and Tools (IA 2005), McLean, VA (May 2005)

13. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. In: Proceedings of the 7th International World Wide
Web Conference, Brisbane, Australia, pp. 161–172 (1998)

14. Radev, D.R., Jing, H., Budzikowska, M.: Centroid-based summarization of multi-
ple documents: sentence extraction, utility-based evaluation, and user studies. In:
NAACL-ANLP 2000 Workshop on Automatic summarization, pp. 21–30. Associa-
tion for Computational Linguistics, Morristown, NJ, USA (2000)

15. Radev, D.R., McKeown, K.R.: Generating natural language summaries from mul-
tiple on-line sources. Comput. Linguist. 24(3), 470–500 (1998)

16. Varadarajan, R., Hristidis, V.: A system for query-specific document summariza-
tion. In: CIKM 2006: Proceedings of the 15th ACM international conference on In-
formation and knowledge management, pp. 622–631. ACM Press, New York (2006)

17. Witbrock, M.J., Mittal, V.O.: Ultra-summarization (poster abstract): a statisti-
cal approach to generating highly condensed non-extractive summaries. In: SIGIR
1999: Proceedings of the 22nd annual international ACM SIGIR conference on Re-
search and development in information retrieval, pp. 315–316. ACM, New York
(1999)

Schema Matching across Query Interfaces on the

Deep Web

Zhongtian He, Jun Hong, and David Bell

School of Electronics, Electrical Engineering and Computer Science,
Queen’s University Belfast, Belfast, BT7 1NN, UK

{zhe01,j.hong,da.bell}@qub.ac.uk

Abstract. Schema matching is a crucial step in data integration. Many
approaches to schema matching have been proposed so far. Different
types of information about schemas, including structures, linguistic fea-
tures and data types, etc have been used to match attributes between
schemas. Relying on a single aspect of information about schemas for
schema matching is not sufficient. Approaches have been proposed to
combine multiple matchers taking into account different aspects of infor-
mation about schemas. Weights are usually assigned to individual match-
ers so that their match results can be combined taking into account their
different levels of importance. However, these weights have to be manu-
ally generated and are domain-dependent. We propose a new approach
to combining multiple matchers using the Dempster-Shafer theory of ev-
idence, which finds the top-k attribute correspondences of each source
attribute from the target schema. We then make use of some heuristics
to resolve any conflicts between the attribute correspondences of differ-
ent source attributes. Our experimental results show that our approach
is highly effective.

1 Introduction

There are now many searchable databases on the Web. These databases are
accessed through queries formulated on their query interfaces only which are
usually query forms. The query results from these databases are dynamically
generated Web pages in response to form-based queries. The number of such
dynamically generated Web pages is estimated around 500 times the number
of static Web pages on the surface Web [1]. In many domains, users are inter-
ested in obtaining information from multiple sources. Thus, they have to access
different Web databases individually via their query interfaces. For large-scale
data integration over the Deep Web, it is not practical to manually model and
integrate these Web databases. We aim to provide a uniform query interface
that allows users to have uniform access to multiple sources [2]. Users can sub-
mit their queries to the uniform query interface and be responded with a set of
combined results from multiple sources automatically.

Schema matching across query interfaces is a critical step in Web data integra-
tion, which finds attribute correspondences between the uniform query interface

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 51–62, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

52 Z. He, J. Hong, and D. Bell

and the query interface for a local database. In general, schema matching takes
two schemas as input and produces a set of attribute correspondences between
the two schemas [3, 4]. The problem of schema matching has been extensively
studied [4,5,6,7,8,9,10,11,12,13,14,15,16]. Some of these methods [9,10,12,13,14]
make use of information about schemas, including structures, linguistic features,
data types, value ranges, etc to match attributes between schemas.

Match results from individual matchers are not accurate and certain, because
they rely on individual aspects of information about schemas only, which are
not sufficient for finding attribute correspondences between schemas. Individual
matchers, however can generate some degree of belief on the validity of possible
attribute correspondences.

In addition, sometimes given a source attribute, there might be two or more
attribute correspondences that are not clearly distinguishable from each other
by an individual matcher. For example, a data type matcher may not be able to
distinguish some attribute correspondences for the same source attribute if they
all have the same data type as the source attribute.

Recent research efforts have been focused on combiningmultiplematchers.How-
ever, how to combine different measures is a difficult issue. In the example shown
in Figure 1, when we use a string similarity-based matcher, the similarity value
between “Published Date” and “Publisher” is greater than the one between “Pub-
lished Date” and “Release Date”, while when a semantic similarity-based matcher
is used, the similarity values are the other way around. Current approaches use dif-
ferent strategies to combine matcher-specific similarity values [12].

However, these strategies sometimes do not truly reflect how well two at-
tributes match. Given a pair of attributes, the Max strategy selects the maximal
similarity value among all the similarity values from different matchers as their
similarity value. For example, if one of our matchers is data type-based matcher,
and the attributes, “Publisher” and “Author”, have the same data type, then
the similarity value is 1 which will be chosen as their final similarity value. But
obviously they do not match. On the other hand, the Min strategy selects the

abebooks.com Compman.co.uk

Fig. 1. Two real-world query interfaces on the Web

Schema Matching across Query Interfaces on the Deep Web 53

lowest similarity value. For example, if a string similarity-based matcher is one
of the matchers, the similarity value of “Published Date” and “Release Date” is
very low, but actually they are a right match. The third strategy, Average, treats
all the matchers equally. For instance, if two matchers are string similarity-based
matcher and semantic similarity-based matcher respectively, the average simi-
larity value between “Published Date” and “Publisher” is higher than the one
between “Published Date” and “Release Date”, but we all know that “Published
Date” and “Release Date” is the correct match. It appears that the semantic
similarity-based matcher should have a higher level of importance. The Weighted
strategy is the most popular strategy that calculates a weighted sum of the simi-
larity values of all the individual matchers, where weights correspond to different
levels of importance of the individual matchers. However, assigning weights to
different matchers now becomes an issue. Weights have to be manually generated
and are domain dependent.

To address these issues, we propose a new strategy for combining multiple
matchers. We use four individual matchers to measure the similarity between
attributes, and make use of Dempster-Shafer (DS) theory of evidence to combine
the results from these matchers.

Finally, sometimes two or more different source attributes may have the same
attribute correspondence. In our approach, we keep the top-k matches of each
source attribute. We then use some heuristics to resolve any conflicts between
the matches of different source attributes.

The rest of this paper is organized as follow. Section 2 introduces the Dempster-
Shafer (DS) theory of evidence. Section 3 describes how to use DS theory in
our approach. Section 4 describes how to resolve conflicts of different source at-
tributes. In Section 5, we report our experiments on our prototype using a dataset
which contains the schemas of real-world query interfaces. Section 6 compares our
work with related work. Section 7 concludes the paper.

2 Dempster-Shafer Theory of Evidence (DS)

The DS theory of evidence, sometimes called evidential reasoning [17] or belief
function theory, is a mechanism formalized by Shafer [18] for representing and
reasoning with uncertain, imprecise and incomplete information. It is based on
the modeling of uncertainty in terms of upper and lower probabilities that are
induced by a multi-valued mapping rather than as a single probability value.

Definition 1. Frames of Discernment. A frame of discernment (or simply a
frame), usually denoted as Θ, contains mutually exclusive and exhaustive possible
answers to a question, one and only one of which is true.

In DS theory, a frame of discernment is used to represent a set of possible
answers to a question. For example, a patient has been observed having two
symptoms: “coughing” and “sniveling” and only three types of illness could
have caused these symptoms: “flu”(F),“cold”(C) and “pneumonia”(P). We use
a frame Θ = {F, C, P} to represent these types of illness.

54 Z. He, J. Hong, and D. Bell

Definition 2. Mass functions. A function, m: 2Θ → [0, 1], is called a mass
function on a frame Θ if it satisfies the following two conditions:

m(φ) = 0 (1)
∑

A⊆Θ

m(A) = 1 (2)

where φ is an empty set and A is any subset of Θ.

Given a frame of discernment, Θ, for each source of evidence, a mass function
assigns a mass to every subset of Θ, which represents the degree of belief that one
of the answers in the subset is true, given the source of evidence. For example,
when the patient has been observed having the symptom “coughing”, the degree
of belief that the patient has “flu” or “cold” is 0.6 and the degree of belief that the
patient has “pneumonia” is 0.4, that is m1({C, F}) = 0.6 and m1({P}) = 0.4.
Similarly, with the symptom of “sniveling”, we have another mass function:
m2({F}) = 0.7, m2({C}) = 0.2 and m2({P}) = 0.1.

When more than one mass function is given on the same frame of discernment,
the theory also provides us with Dempster’s combination rule. If m1 and m2

are two mass functions on frame Θ, then m = m1

⊕
m2 is the combined mass

function, where
⊕

means using Dempster’s combination rule, defined as follows:

m(C) =

∑
A

⋂
B=C m1(A)m2(B)

1 − ∑
A

⋂
B=φ m1(A)m2(B)

(3)

In the above example, we combine two mass functions, m1 and m2, to get
m({C})=0.207, m({F})=0.724 and m({P})=0.069. Therefore given the two
symptoms the patient has, it is more likely that he is having “flu”.

3 Combining Multiple Matchers Using DS Theory

Given a source schema and a target schema, our approach combines a set of indi-
vidual matchers using the Dempster-Shafter theory of evidence to produce a set
of attribute correspondences between the two schemas. Our approach consists of
a number of steps: 1. Applies each of the individual matchers to the two given
schemas; 2. Interprets the results from the individual matchers using the DS the-
ory; 3. Combines the results from the individual matchers using the Dempster’s
combination rule to produce the top k attribute correspondences of each source
attribute; 4. Decides on the attribute correspondence of each source attribute
and resolves conflicts between attribute correspondences of two or more source
attributes.

3.1 Individual Matchers

We use four individual matchers, the first three matchers are based on the lin-
guistic features of attribute names and the last matcher uses the data types of
attributes.

Schema Matching across Query Interfaces on the Deep Web 55

Semantic Similarity: We use WordNet1, an ontology database to compute
the semantic similarity between two words. We use the traditional edge count-
ing approach to measuring word similarity. We define similarity between two
words as S(w1, w2) = 1/L, where L is the shortest path in WordNet be-
tween these two words. Suppose that two attribute names have two sets of
words S1 = {w1, w2, ..., wm} and S2 = {w′

1, w
′
2, ..., w

′
n}. We compare the sim-

ilarity values between each word in S1 with every word in S2 and find the
highest semantic similarity value. We then get a similarity value set for S1:
Sim1 = {s1, s2, ..., sm}. Using the same method we get a similarity value set for
S2: Sim2 = {s′1, s′2, ..., s′n}. From these two similarity value sets we calculate the
similarity value between two attribute names S1 and S2 as:

Sim(S1, S2) =
∑m

i=1 si +
∑n

i=1 s′i
m + n

(4)

where m is the number of the words in S1, n is the number of the words in S2.

Edit Distance-Based Matcher: Edit distance is the number of edit operations
necessary to transform one string to another [19]. We define the edit distance-
based string similarity as follows:

simed(w1, w2) =
1

1 + ed(w1, w2)
(5)

where w1 and w2 are two words, ed(w1, w2) is the edit distance between these
two words. Similar to the semantic similarity matcher, we get two similarity
value sets for two attribute names first and then calculate the similarity value
between two attribute names based on the two similarity value sets using the
formula defined in (4).

Jaro Distance: Similar to the edit distance matcher, we use the formula in (4) to
calculate the similarity value between two attribute names, where the similarity
value between two words is calculated using the Jaro distance instead. The Jaro
distance measures the similarity of two strings based on the number and order
of the common characters between them. Given two strings s = a1 · · · ak and
t = b1 · · · bl, a character ai in s is in common with t, if there is a bj = ai in
t such that i − H ≤ j ≤ i + H , where H = min(|s|,|t|)

2 . Let s′ = a′
1 · · · ak′ , be

the characters in s which are in common with t (in the same order they appear
in s) and t′ = b′1 · · · bl′ similarly. We define a transposition for s′andt′ to be a
position i such that a′

i �= b′i. Let Ts,t be half the number of transpositions of s′

and t′. The Jaro similarity metric for s and t is defined as follows [21]:

Jaro(s, t) =
1
3
·
(|s′|
|s| +

|t′|
|t| +

|s′| − Ts′,t′

|s′|
)

(6)

Data Types: As discussed in [8], we define that two data types are compatible if
they are the same or one subsumes another (is-a relationship). Currently we focus
1 http://wordnet.princeton.edu/

56 Z. He, J. Hong, and D. Bell

Fig. 2. Data types and their relationships

only on the data types that are shown in Figure 2. For example, in Figure 2, an
“integer” is a “float”. So we say that their data types are the same or compatible
(incidentally, “null” is compatible to any data type). The similarity value between
two attribute names is 1, if their data types are the same. Otherwise it is 0.

3.2 Interpreting Results from Individual Matchers

Assume that we have a source schema, S = {a1, a2, ..., am}, where ai, for i =
1, 2, ..., m, is a source attribute, and a target schema, T = {b1, b2, ..., bn}, where
bj, for j = 1, 2, ..., n, is a target attribute. For each source attribute, ai, we have a
set of possible correspondences in the target schema {< ai, b1 >, < ai, b2 >, ..., <
ai, bl >}. It is also possible that ai, may have no correspondence in the target
schema at all. We therefore have a frame of discernment for ai, Θ = {< ai, b1 >
, < ai, b2 >, ..., < ai, bl >, < ai, null >}, where < ai, null > represents that there
is no correspondence for ai in the target schema. This frame of discernment
contains an exclusive, exhaustive set of answers (see Definition 1) to the question
of finding an attribute correspondence for ai, in the target schema. One and only
one of these answers is true.

Generating Indistinguishable Subsets of Attribute Correspondences.
For some matchers we cluster Θ into a set of indistinguishable subsets, because
some attribute correspondences may not be distinguishable. For example, if a
source attribute has the same data type with two target attributes, then the two
correspondences cannot be distinguished from each other, so we cluster these
indistinguishable correspondences into a subset.

Generating Mass Distributions on Indistinguishable Subsets. We now
describe how to generate a mass distribution that assigns a mass to an indistin-
guishable subset of Θ, on the basis of the similarity measures on the attribute
correspondences in the subset.

Given an indistinguishable subset of attribute correspondences, we have a
similarity value for each correspondence, which represents how well the two
attributes in the correspondence match according to the criterion used by the
matcher. Suppose the subset is {< ai, bi1 >, < ai, bi2 >, ..., < ai, bil >}, a mass

Schema Matching across Query Interfaces on the Deep Web 57

assigned to the subset is calculated based on the similarity values for all the
attribute correspondences in the subset as follows:

m′(A) = 1 − Π l
j=1(1 − Sim(ai, bij)) (7)

where Sim(ai, bij) is the similarity value for one of the correspondences in the
subset. For the special singleton subset, {< ai, null >}, since we do not have
a similarity value for it by any matcher, the mass assigned to the subset is
calculated as follows:

m′({< ai, null >}) = Π l
j=1(1 − Sim(ai, bij)) (8)

The mass distributed to {< ai, null >}, therefore, represents the degree of be-
lief that none of the target attributes is the attribute correspondence of source
attribute, ai.

DS theory requires that the sum of all masses assigned to every indistinguish-
able subset equals to 1. We scale the mass distribution, m′, by the following
formula:

m(A) =
m′(A)

∑
B⊆Θ m′(B)

(9)

where A and B are subsets of Θ. The mass distribution produced by (9) assigns
a mass to every indistinguishable subset of Θ, which represents the degree of
belief by the matcher that the attribute correspondence of the source attribute,
ai, belongs to the subset.

3.3 Combining Mass Distributions from Multiple Matchers

We now have a mass distribution by each of the individual matchers, which
assigns a mass to every indistinguishable subset of Θ. A mass distribution can
be seen as an opinion expressed by a matcher on the degree of belief that the
attribute correspondence of the source attribute belongs to an indistinguishable
subset. Using Dempster’s combination rule, we can take into account different
opinions by different matchers by combining the mass distributions by these
matchers. The mass distribution produced after this is used to select the top k
attribute correspondences of each source attribute.

4 Resolving Conflicts between Attribute Correspondences

We have now the top k attribute correspondences of each source attribute. How-
ever, these attribute correspondences have so far been selected for an individual
source attribute only. There might be conflicts between attribute correspon-
dences of two or more source attributes (ie. the best correspondences of two
different source attributes are the same target attribute). To resolve any conflicts
that may arise between attribute correspondences, the attribute correspon-
dences of source attributes are collectively selected to maximize the sum of all the

58 Z. He, J. Hong, and D. Bell

masses on the attribute correspondence of every source attribute. The algorithm
is given in Algorithm 1.

For example, suppose that both source and target schemas have three at-
tributes, the source attributes are {Author, Publisher, Published Date}, and
the target attributes are {Author, Keywords, Release Date}. We have the top
k (k = 3) correspondences of each source attribute: { m(<Author,Author>)
= 0.88, m(<Author,null>) = 0.11, m(<Author,Keywords>) = 0.01 }, { m(<
Publisher,Author>) = 0.47, m(<Publisher,null>) = 0.40, m(<Publisher, Key-
words>) = 0.13}, { m(<Published Date,Release Date>) = 0.87, m(<Published
Date,null>) = 0.13, m(<Published Date, Author>) = 0.0 }. The top attribute
correspondence of “Author”, <Author,Author>, is in conflict with the top cor-
respondence of “Publisher”, <Publisher,Author>. By using our algorithm, {
<Author,Author>,<Publisher,null>,<Published Date,Release Date> } has the
maximum sum of mass function values.

Algorithm 1. Resolving Conflicts
Input: A set of all the possible combinations of attribute correspondences Ω =

{C|C = {< a1, b
′
1 >, < a2, b

′
2 > ... < am, b′m >}},where < ai, b

′
i >∈ {< ai, bi1 >, <

ai, bi2 >, ..., < ai, bik >} (the top konly correspondences of ai)
Output: A collection of correspondences with the maximum sum of the mass values

of the correspondences for every source attribute
1: Max ← 0; Best ← null.
2: for each C∈ Ω do
3: Sum = Σm

i=1m(< ai, b
′
i >), where m(< ai, b

′
i >) is the mass function value of

< ai, b
′
i >

4: if Sum > Max then
5: Max ← Sum; Best ← C;
6: end if
7: end for
8: return Best

5 Experimental Results

5.1 Dataset

To evaluate our approach, we have selected a set of query interfaces on the real-
world websites from the ICQ Query Interfaces dataset at UIUC, which contains
manually extracted schemas of 100 interfaces in 5 different domains: Airfares,
Automobiles, Books, Jobs, and Real Estates. In this paper we have focused on
1:1 matching only, so only 88 interfaces are chosen from the dataset. In each
domain we choose an interface as the source interface, and use others as the
target ones.

5.2 Performance Metrics

We use three metrics: precision, recall, and F-measure [20, 10, 22]. Precision
is the percentage of correct matches over all matches identified by a matcher.

Schema Matching across Query Interfaces on the Deep Web 59

Table 1. The precisions of different matchers

Edit distance Jaro distance Semantic similarity Our matcher

Airfares 83.3% 56.8% 86.4% 92.0%

Automobiles 84.4% 48.1% 93.1% 96.3%

Books 87.0% 48.8% 92.0% 94.4%

Jobs 68.5% 50.0% 71.0% 91.9%

Real Estates 86.8% 52.9% 81.6% 93.8%

Average 82.1% 51.3% 84.8% 93.7%

Recall is the percentage of correct matches by a matcher over all the matches
by domain experts. F-measure is the incorporation of precision and recall. In
our approach the “no match” (“null”) is also an answer to the source attribute.
So it is always possible to find a correspondence to each source attribute, that
is, the number of matches by our approach equals to the number of matches
identified by experts. So in our approach, precision and recall are both the
same, and we use precision only.

5.3 Discussion on Experimental Results

First, for each domain we perform four experiments, we use three individ-
ual matchers: edit distance, Jaro distance and semantic similarity (the data
type matcher cannot be used alone) separately to find matches between the
source and target schemas, and compare their results with our new approach. In
Table 1, we can see that the precisions of individual matchers and our approach.
Our matcher gets an average precision of “93.7%” which is much higher than
individual matchers.

Second, we compare our results with the work in [9], which also uses the
same dataset for their experiments. However, in [9], they not only focus on 1:1
matching but also handle 1:m matching. In their experiments, a 1:m match is
counted as m 1:1 matches. So we can only roughly compare our approach with
their work.

Fig. 3. Precision, recall and K measure of different matchers

60 Z. He, J. Hong, and D. Bell

As we discussed in section 5.2, precision is the same as recall in our exper-
iments. According to the definition of F-measure in [9], F = 2PR

P+R , where P is
precision and R is Recall, the F-measure is also the same as precision. In [9]
they did three experiments, the first one is on automatic matching which used
a weighted strategy to combine multiple matchers and a 0 threshold is used to
select the combined match results. The second experiment is almost the same
as the first one but the threshold is obtained by training. The last one allowed
user interaction. As shown in Figure 3, we can see that without training (learned
threshold), the results of our approach are better. When they use the learned
threshold, their precision is better than ours, but we have higher recall and
F-measure. Finally, when user interactions are allowed in their approach, their
results are better than ours. So we can see, our approach is effective and accurate
for an automatic schema matching across query interfaces without training and
user interaction.

6 Related Work

Many approaches have been proposed for automatic schema matching [9,10,12,
13,14,15,16]. We relate our work to the existing works in two kinds of matching
methods.

First, like in our approach, strategies have also been proposed in some ap-
proaches [10, 12] to combine multiple matchers. Cupid [10] considers linguistic
similarity and structural similarity between elements and uses a weighted for-
mula to combine these two similarities together. The weighted strategy is the
most popular strategy used in combining individual matchers. However, weights
have to be manually generated and are domain dependent.

COMA [12] also does 1:1 matching, and combines individual matchers in a
flexible way. It allows users to tailor match strategies by selecting the match
algorithms and their combination for a given match problem. It also allows
users to provide feedback which can help improve match results. In this system,
several aggregation strategies have been provided for users to choose. They are
Max, Min, Average and Weighted strategies. As we discussed in Section 1,these
strategies are effective in some situations while sometimes they cannot combine
results well, and choosing strategies by users involves human efforts.

In [9], they also used weights to combine multiple matchers. However, they
used clustering to find attribute correspondences across multiple interfaces. A
threshold is required for the combined match results, which needs to be manually
generated and is domain dependent. So this approach also involves human effort.

Second, some approaches [6, 8] do not combine multiple matches. MGS [6]
and DCM [8] depend on the distribution of attributes rather than linguistic
or domain information. Superior to other schema matching approaches, these
approaches can discover synonyms by analyzing the distribution of attributes in
the given schemas. However, they work well only when a large training dataset
is available, and this is not always the case.

Schema Matching across Query Interfaces on the Deep Web 61

7 Conclusions and Future Work

In this paper we proposed a new approach to combining multiple matchers by
using the Dempster-Shafer theory of evidence and presented an algorithm for
resolving the conflicts among the correspondences of different source attributes.
In our approach, different matches are viewed as different sources of evidence,
and mass distributions are defined on the basis of the match results from these
matchers. We use Dempster’s combination rule to combine these mass dustribu-
tions, and choose the top k correspondences of each source attribute. Conflicts
between the correspondences of different source attributes are finally resolved.
We have implemented a prototype and tested it using a large dataset that con-
tains real-world query interfaces in five different domains. The experimental
results demonstrate the feasibility and accuracy of our approach.

We have focused on one-to-one matching between schemas in this paper. In
the near future we will extend our approach to complex matching. There are
more issues on uncertainty in complex matching, such as how many groups the
attributes in a schema should be divided into, and which group should contain
a specific attribute. Using uncertainty theory to address these issues could be
feasible and effective.

References

1. Bergman, M.K.: The deep web: Surfacing hidden value. BrightPlanet (2001)

2. Dragut, E.C., Yu, C.T., Meng, W.: Meaningful labeling of integrated query inter-
faces. In: Proceedings of the 32th International Conference on Very Large Data
Bases (VLDB 2006), pp. 679–690 (2006)

3. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Journal
of Data Semantics, 146–171 (2005)

4. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB Journal 10(4), 334–350 (2001)

5. He, B., Tao, T., Chang, K.C.C.: Clustering structured web sources: A schema-
based, model-differentiation approach. In: Proceedings of the joint of the 20th
International Conference on Data Engineering and 9th International Conference
on Extending Database Technology (ICDE/EDBT) Ph.D. Workshop, pp. 536–546
(2004)

6. He, B., Chang, K.C.C.: Statistical schema matching across web query interfaces.
In: Proceedings of the 22th ACM International Conference on Management of Data
(SIGMOD 2003), pp. 217–228 (2003)

7. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In: Proceedings of
the 18th International Conference on Data Engineering (ICDE 2002), pp. 117–128
(2002)

8. He, B., Chang, K.C.C., Han, J.: Discovering complex matchings across web query
interfaces: a correlation mining approach. In: Proceedings of the 10th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD 2004), pp. 148–157 (2004)

62 Z. He, J. Hong, and D. Bell

9. Wu, W., Yu, C.T., Doan, A., Meng, W.: An interactive clustering-based approach
to integrating source query interfaces on the deep web. In: Proceedings of the 23th
ACM International Conference on Management of Data (SIGMOD 2004), pp. 95–
106 (2004)

10. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid.
In: Proceedings of the 27th International Conference on Very Large Data Bases
(VLDB 2001), pp. 49–58 (2001)

11. Wang, J., Wen, J.R., Lochovsky, F.H., Ma, W.Y.: Instance-based schema matching
for web databases by domain-specific query probing. In: Proceedings of the 30th
International Conference on Very Large Data Bases (VLDB 2004), pp. 408–419
(2004)

12. Do, H.H., Rahm, E.: Coma - a system for flexible combination of schema matching
approaches. In: Proceedings of the 28th International Conference on Very Large
Data Bases (VLDB 2002), pp. 610–621 (2002)

13. Beneventano, D., Bergamaschi, S., Castano, S., Corni, A., Guidetti, R., Malvezzi,
G., Melchiori, M., Vincini, M.: Information integration: The momis project demon-
stration. In: Proceedings of the 26th International Conference on Very Large Data
Bases (VLDB 2000), pp. 611–614 (2000)

14. Castano, S., Antonellis, V.D., di Vimercati, S.D.C.: Global viewing of heteroge-
neous data sources. IEEE Transactions on Knowledge and Data Engineering 13(2),
277–297 (2001)

15. Doan, A., Domingos, P., Levy, A.Y.: Learning source description for data integra-
tion. In: Proceedings of the 3rd International Workshop on the Web and Databases
(WebDB 2000) (Informal Proceedings), pp. 81–86 (2000)

16. Doan, A., Domingos, P., Halevy, A.Y.: Reconciling schemas of disparate data
sources: A machine-learning approach. In: Proceedings of the 20th ACM Inter-
national Conference on Management of Data (SIGMOD 2001), pp. 509–520 (2001)

17. Lowrance, J.D., Garvey, T.D.: Evidential reasoning: An developing concept. In:
Proceedings of the IEEE International Conference on Cybernetics and Society
(ICCS 1981), pp. 6–9 (1981)

18. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,
Princeton (1976)

19. Hall, P., Dowling, G.: Approximate string matching. Computing Surveys, 381–402
(1980)

20. Halevy, A.Y., Madhavan, J.: Corpus-Based Knowledge Representation. In: Pro-
ceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI
2003), pp. 1567–1572 (2003)

21. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string distance
metrics for name-matching tasks. In: Proceedings of the 18th International Joint
Conference on Artificial Intelligence Workshop on Information Integration on the
Web (IIWeb 2003), pp. 73–78 (2003)

22. van Rijsbergen, C.J.: Information Retrival. Butterworths (1979)
23. Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A.Y.: Learning to

match ontologies on the semantic web. VLDB Journal 12(4), 303–319 (2003)

A Generic Data Level Implementation of ModelGen

Andrew Smith and Peter McBrien

Dept. of Computing, Imperial College London,
Exhibition Road, London SW7 2AZ

Abstract. The model management operator ModelGen translates a schema ex-
pressed in one modelling language into an equivalent schema expressed in an-
other modelling language, and in addition produces a mapping between those
two schemas. This paper presents an implementation of ModelGen which in ad-
dition allows for the translation of data instances from the source to the target
schema, and vice versa. The translation mechanism is distinctive from others in
that it takes a generic approach that can be applied to any modelling language.

1 Introduction

ModelGen is a model management [1] operator that translates a schema from one
data modelling language (DML) into an equivalent schema in another DML and also
produces a mapping between the schemas. To date, no implementation of ModelGen
completely meets these criteria [2].

In this paper we describe a generic implementation of ModelGen that creates data
level translations between schemas by the composition of generic transformations, as
well as a bidirectional mapping from the source to the target schema. A distinguishing
feature of this work is that the choice of transformations does not rely on knowledge of
the source DML. An implementation of ModelGen such as this is useful in a number
of circumstances. For example, an e-business may wish to move data between its back
end SQL database and its XML based web pages without having to re-engineer the
mappings every time the database schema or web pages are changed.

There are two specific prerequisites to translating schemas between DMLs automati-
cally. Firstly we need an accurate and generic UMM capable of describing the schemas
and the constructs of both the source and the target DML, so the system can recognise
when a given schema matches those constructs. In this paper we make use of the hy-
pergraph data model (HDM) [3] to accurately describe constructs and schemas. The
constructs of a number of DMLs, including XML, UML class diagrams, ER and SQL,
have already been defined in terms of the HDM [3,4]. Secondly we need an information
preserving [5] way of transforming the resulting HDM schema such that the structure
of its constructs match those of the target DML. We use the Both-As-View (BAV) data
integration technique [6] to transform schemas.

Figure 1 gives an overview of our approach. In step 1 the source schema Ss is trans-
lated into an equivalent HDM schema, Shdm−s. Next, a series of transformations are
applied to Shdm−s to transform it to Shdm−t that is equivalent to a schema in the target
DML. In step 3 the constructs in Shdm−t are translated into their equivalents in the
target DML to create St.

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 63–74, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

64 A. Smith and P. McBrien

Fig. 1. Overview of the approach taken

Step one of this process depends on existing definitions of high level DML constructs
in the HDM. The contribution we make in this paper is to show how steps 2 and 3 can
be automated without having to know the DML used to create Ss. Firstly we present
an algorithm for identifying schema objects within the HDM schema that match con-
structs in the target DML and secondly we present an automatic way of choosing the
transformation rules at run time that transform a schema expressed in the HDM and its
data into an equivalent schema that matches the constructs of the target DML.

The remainder of this paper is structured as follows: Section 2 gives a brief overview
of the HDM and the BAV data integration technique and introduces an example schema.
We also describe BAV composite transformations and introduce a new one. In Section 3
we present our algorithm for matching HDM schema objects with constructs in a target
DML. Section 4 introduces the algorithm we use to select appropriate composite trans-
formations for the translation. Section 5 gives an example translation. In Section 6 we
present some experimental results and some analysis. Section 7 describes other propos-
als for ModelGen as well as some specific model to model translators. Finally Section 8
offers some conclusions.

2 HDM and BAV

The HDM uses a set of three simple constructs: nodes, edges and constraints, to model
high level constructs in a given DML. HDM nodes and edges can have associated data
values or extents. Each element in the XML instance document is assigned a unique
object identifier (OID) shown next to the element. If the node representing the ele-
ment is not a leaf node and does not have any key nodes associated with it then this
OID becomes the extent of the node. For example, Figure 3 shows how HDM repre-
sents the XML Schema and accompanying XML instance document in Figure 2. The
extent of HDM node 〈〈dept〉〉 is {01,04,07}. If there is a key associated with the ele-
ment then the extent of the element node is that of the key. For example the extent of
〈〈person〉〉 is {1,2}. The extent of an edge is a tuple made up of values from the nodes
or edges it joins. For example the extent of HDM edge 〈〈 ,person,name〉〉 is {〈1,’John
Smith’〉, 〈2,’Peter Green’〉}.

When defining the constructs of high level DMLs in the HDM each construct falls
into one of four categories [3], the following three of which we use in this paper when
describing the XML Schema and SQL data models:

– Nodal constructs can exist on their own and are represented by a node. The root
node of an XML Schema and an SQL table are examples of a nodal constructs.

A Generic Data Level Implementation of ModelGen 65

– Link-Nodal constructs are associated with a parent construct and are represented
by a node and an edge linking the node to the parent. XML attributes and elements
are link-nodal constructs, as are SQL columns.

– Constraint constructs have no extent but rather constrain the values that can occur
in the constructs they are associated with. They are represented in HDM by one or
more of the HDM constraint operators [3]. Those used in this paper are: inclusion
(⊆), mandatory (�), unique (�) and reflexive (

id→). A SQL foreign key is an example
of a constraint construct that is represented in the HDM by an inclusion constraint
between two HDM nodes representing SQL columns.

The variants of a high level construct can be modelled using different combina-
tions of constraints. For example, the fact that the XML attribute, id, in Figure 2 is
a required attribute is modelled in HDM by adding a � operator between 〈〈person〉〉
and 〈〈 ,person,id〉〉. This means that every value in 〈〈person〉〉 must also appear in the
edge i.e. there can be no value of the parent element without an associated attribute
value. An attribute that does not have the required flag set would not generate this
extra constraint.

We use the BAV data integration technique [6] to transform our schemas. A BAV
transformation pathway is made up of a sequence of transformations which either
add, delete or rename a single schema object thereby generating a new schema. The ex-
tent of the new schema object or of the one removed is defined as a query on the extents
of the existing schema objects. In this way the information preserving transformation

<xsd:complexType name = "person_type">
<xsd:sequence>
<xsd:element name = "name" type = "xsd:string" />

</xsd:sequence>
<xsd:attribute name = "id" type = "xsd:int" use = "required"/>

</xsd:complexType>
<xsd:element name = "staff">
<xsd:complexType>
<xsd:sequence>
<xsd:element name = "dept" maxOccurs = "unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name = "person" type = "person_type"

minOccurs = "0" maxOccurs = "unbounded" />
</xsd:sequence>
<xsd:attribute name = "dname" type = "xsd:string"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>
<xsd:key name = "personkey">
<xsd:selector xpath = "./dept/person" />
<xsd:field xpath = "@id" />

</xsd:key>
</xsd:element>

<staff> 00
<dept dname = ’Finance’> 01

<person id = "1"> 02
<name>John Smith</name> 03

</person>
</dept>
<dept dname=’HR’> 04

<person id = "2"> 05
<name>Peter Green</name> 06

</person>
</dept>
<dept dname=’IT’> 07
</dept>
</staff>

Fig. 2. Sxml Fig. 3. Shdm−xml

66 A. Smith and P. McBrien

Fig. 4. expand mv Fig. 5.
id node expand

Fig. 6. inc expand

pathway made up of schemas and transformation operations is created that shows in
detail how a source schema is transformed into a target schema. This transformation
pathway forms a mapping between the schemas.

2.1 Composite Transformations

BAV transformations are fine grained and allow for accurate translations, but since each
step only changes one schema object a large number of transformations are needed for
most operations. To avoid the need to programme each transformation step separately,
information preserving composite transformations (CTs) can be defined that are tem-
plates, describing common patterns of transformation steps.

Three such CTs are used when we translate between schemas in the XML Schema
and SQL modelling languages. Two of those used, namely id node expand and inc-
expand, have been previously defined [3] and are shown graphically in Figures 5

and 6, respectively. The third CT, expand mv, is defined by the pseudo code in Al-
gorithm 1 and illustrated in Figure 4. It is useful when translating from a DML that
supports multivalued attributes (such as XML Schema) into to a target DML that does
not (such as SQL). In the figure, the �� symbol represents a join operation between
〈〈 ,T,B〉〉 and 〈〈 ,T,TA〉〉 i.e. the constraints linked to the join apply to both edges. The
contains predicate [3] in the algorithm holds when its first argument appears as a con-
struct in the formula that is in the second argument. We will see in Section 5 how these
three CTs can be used to translate the XML schema in Figure 2 to SQL.

3 AutoMatch

The detailed constraint language used in the HDM allows us to accurately identify
groups of HDM constructs that correspond to an equivalent high level DML construct.
Table 3 shows the constraints associated with the various constructs in SQL. 〈〈T〉〉 is
an HDM node representing an SQL table, 〈〈C〉〉 represents a column in that table and
〈〈 ,T,C〉〉 links the two nodes. In the final line of the table 〈〈C〉〉 represents a foreign key
column and 〈〈T〉〉 the table the foreign key links to.

In Figure 3, the constraints associated with 〈〈 ,person,name〉〉 match those of a not
null SQL column as shown in Table 3, where 〈〈person〉〉 acts as the table node and

A Generic Data Level Implementation of ModelGen 67

Algorithm 1. expand mv(〈〈B〉〉,〈〈 ,A,B〉〉)
if 〈〈A〉〉 � 〈〈 ,A,B〉〉 then

Exception

addNode(〈〈T〉〉,〈〈 ,A,B〉〉)
addNode(〈〈TA〉〉,[{x} | {x, y} ← 〈〈 , A,B〉〉])
addEdge(〈〈 ,T,TA〉〉,[{{x, y}, x} | {x, y} ← 〈〈 , A, B〉〉])
addEdge(〈〈 ,T,B〉〉,[{{x, y}, y} | {x, y} ← 〈〈 , A, B〉〉])
addCons(〈〈TA〉〉 ⊆ 〈〈A〉〉)
addCons(〈〈T〉〉 � 〈〈 ,T,TA〉〉 �� 〈〈 ,T,TA〉〉)
addCons(〈〈T〉〉 � 〈〈 ,T,B〉〉 �� 〈〈 ,T,B〉〉)

addCons(〈〈T〉〉 id→ 〈〈 ,T,TA〉〉 �� 〈〈 ,T,B〉〉)
addCons(〈〈TA〉〉 � 〈〈 ,T,TA〉〉)
addCons(〈〈B〉〉 � 〈〈 ,T,B〉〉)
foreach c ∈ Cons forwhich contains(〈〈 , A, B〉〉, c) do

deleteCons(c)
deleteEdge(〈〈 ,A,B〉〉,〈〈T〉〉)

Table 1. SQL constructs and the associated constraints

SQL Construct Variant HDM Constraints
Column null 〈〈T 〉〉 � 〈〈 , T, C〉〉, 〈〈T 〉〉 � 〈〈 , T, C〉〉
Column not null 〈〈C〉〉 � 〈〈 , T, C〉〉, 〈〈T 〉〉 � 〈〈 , T, C〉〉, 〈〈T 〉〉 � 〈〈 , T, C〉〉
Primary Key 〈〈T 〉〉 id→ 〈〈 , T, C〉〉, 〈〈C〉〉 � 〈〈 , T, C〉〉, 〈〈T 〉〉 � 〈〈 , T, C〉〉

〈〈T 〉〉 � 〈〈 , T, C〉〉
Foreign Key 〈〈C〉〉 ⊆ 〈〈T 〉〉

〈〈name〉〉 the column node. Conversely the constraints on 〈〈 ,staff,dept〉〉 do not match
any of the SQL constructs.

AutoMatch as shown in Algorithm 2, loops through all the edges in S, edges(S),
comparing the associated constraints with those generated when a construct from the
target DML is expressed in the HDM. Each edge in edges(S) has a target model con-
struct label attached to it that is initially set to null. We use this label to identify the target
DML construct that the HDM schema object has been matched to. A similar algorithm
is used to identify matches between HDM constraint constructs in S, and constructs in
the target DML.

get constraints(S, e) returns the list of constraint operators in S that are attached
to e. get target constraint constraints returns the constraint list for ts. For exam-
ple, if ts was a SQL column, the function would return the first and second lines
from Table 3. match(dc, tc) returns true if dc matches any of the variants of ts. la-
bel dependent schema objects(e, ts) sets the label of e in edges(S) to ts. If the
HDM representation of ts includes constructs other than e these are also labelled with
the appropriate target DML construct.

Consider 〈〈 ,person,name〉〉 in Figure 3. If our target model was SQL then the al-
gorithm would identify this edge as part of a SQL column. 〈〈person〉〉.label would be
set to table and 〈〈 ,person,name〉〉.label and 〈〈name〉〉.label would be set to column.

68 A. Smith and P. McBrien

Algorithm 2. AutoMatch(S,TM)
Input: S:an HDM schema, TM :the list of target DML constructs
return true if all edges have been labelled, otherwise false
all labelled := true;
foreach e in edges(S) do

dc := get constraints(S, e);
foreach ts in TM do

if e.label = null then
tc := get target construct constraints(ts);
if match(dc, tc) then

label dependent schema objects(e, ts);

if e.label = null then
all labelled := false;

return all labelled;

In contrast 〈〈 ,dept,person〉〉 cannot be matched to any target DML structures and so
〈〈 ,dept,person〉〉.label remains null.

4 AutoTransform

AutoTransform transforms the unidentified HDM constructs of our source schema into
equivalent groups of HDM constructs that match those representing a construct in the
target DML. It is based on a search of the set of possible schemas that can be created by
applying CTs to unidentified schema elements. This set is called the world space [7]
of the problem. It can be represented as a graph whose nodes are the individual HDM
schemas and whose edges are the CTs needed to get from one HDM schema to the
next. The world space graph for the example in Section 5 is shown in Figure 7. The
algorithm performs a depth first search on the world space starting from the initial state
and executing CTs until a solution or a dead end is reached.

To limit the number of possible actions that may be performed at each node of
the world space graph, each action must satisfy certain preconditions before it can be

Fig. 7. The world space graph for the example

A Generic Data Level Implementation of ModelGen 69

Table 2. The preconditions of the CTs used in the example

Transformation edge leaf reflexive join
inc expand Y N N N
um redirection Y N DNC N
expand mv Y Y N N
id node expand N Y N N

executed. In our algorithm the preconditions rely on the structure of the graph surround-
ing the schema object the CT is to be applied to. Some of the CTs and their precondi-
tions are shown in Table 2. In addition to those mentioned in Section 2.1 we include
um redirection [3]. The DNC in the table means we Do Not Care (DNC) whether the
precondition is met or not. If we assume so is the current schema object the precondi-
tions are:

edge is so an edge
leaf is so a leaf node or connected to a leaf node
reflexive is there a reflexive constraint attached to so
join does so take part in a join

As an example consider the inc expand transformation. It can only be applied to an
edge, the edge must not be attached to leaf node, there must not be a reflexive constraint
on the edge and the edge must not take part in a join. As we saw in the previous section,
AutoMatch was unable to match 〈〈 ,dept,person〉〉 in Figure 3 to any target DML con-
struct. We see, however, that this edge matches all the preconditions for inc expand.
These preconditions provide a heuristic method of selecting the CTs to execute. Those
CTs that match the preconditions for a given node in the world space graph are put into
a list and those have the fewest DNCs, i.e. that match the preconditions most closely,
are put at the top of the list.

AutoTransform works as follows, first AutoMatch is run to label edges(S). If Au-
toMatch is able to label all the edges in edges(S) the transformation has been a success,
the current schema is added to the result pathway and the algorithm returns the pathway.
Otherwise, the algorithm loops through all the edges in edges(S) looking for those with
null labels. When one is found the matching cts function is called to create an ordered
list of CTs whose preconditions match the structure of the graph surrounding the edge.
The hashmap, CT tried, is checked to make sure the CT at the top of the list has not
been tried on the current edge in the current schema. If it has the next CT is tried. If not
the CT is applied to the edge to create schema S′. The current schema, S, is then added
to the result pathway and CT tried is updated with the current edge and schema. The
algorithm is then called again with the transformed schema and the tail of the pathway.

If no suitable transformation can be found for any of the unidentified schema ele-
ments then the head function is used to remove the most recent schema from the result
pathway to allow backtracking. For example, in Figure 7 if we came to a dead end after
step 1 we could backtrack to schema S and try the inc expand transformation on e2. If
the result path is empty then we have failed to transform the schema. If it does not fail
the algorithm is run again on S′ with the updated result pathway.

70 A. Smith and P. McBrien

Algorithm 3. AutoTransform(S, TM, CT, pathway)
Input: S: an HDM schema, TM : the list of target DML constructs,
CT : the set of possible CTs, pathway: the transformation pathway, initially []
return a transformation pathway describing how to transform the source schema into one
that matches the constructs of the target DML
CT tried = new HashMap;
if AutoMatch(S,TM) then

pathway := Concatenate(S, pathway);
return pathway;

else
S′ := null;
foreach e in edges(S) do

if e.label = null then
mt[] := matching cts(S, e);
foreach t in mt[] do

if !CT tried.(t) contains (S,e) then
S′ := the result of applying t to e;
pathway := Concatenate(S, pathway);
CT tried.put((S, e), t);
AutoTransform(S′, TM, CT, pathway);

if S’ = null then
S′ := head(pathway);
if S’ = null then

Exception;
else

AutoTransform(S′, TM, CT, tail(pathway));

5 Example Transformation from XML to SQL

In this section, we show how AutoTransform is used to transform the schema shown in
Figure 3 into one that matches the structure of an SQL schema represented in the HDM.
The world space for the example is shown in Figure 7 and the list of CTs selected by
the algorithm is shown below.

1. inc expand(〈〈person〉〉,〈〈 ,dept,person〉〉)
2. expand mv(〈〈deptpersondept〉〉,〈〈 ,dept,deptpersondept〉〉)
3. inc expand(〈〈dept〉〉,〈〈 ,staff,dept〉〉)
4. expand mv(〈〈staffdeptstaff〉〉,〈〈 ,staff,staffdeptstaff〉〉)

In the first iteration AutoMatch returns 〈〈 ,dept,person〉〉 and 〈〈 ,staff,dept〉〉 with null
labels. If we consider 〈〈 ,dept,person〉〉 first, and compare the structure of the surround-
ing schema with the preconditions in Table 2, we see that two CTs match. inc expand
matches with one DNC, whereas um redirection has two DNCs, so inc expand is exe-
cuted. The resulting schema is shown in Figure 8. In the second iteration 〈〈 ,staff,dept〉〉

A Generic Data Level Implementation of ModelGen 71

Fig. 8. After applying CT 1 Fig. 9. After applying CT 2

Fig. 10. Final HDM Schema

and the newly created edge 〈〈 ,dept,deptpersondept〉〉 will be returned with null labels
by AutoMatch. The only CT whose preconditions are met by 〈〈 ,dept,deptpersondept〉〉
is expand mv. The resulting schema is shown in Figure 9. Two similar iterations
that execute CTs 3 and 4, transform 〈〈 ,staff,dept〉〉 to create the schema shown in
Figure 10, where all the HDM constructs match those of the SQL model. The 〈〈person〉〉,
〈〈deptperson〉〉, 〈〈dept〉〉, and 〈〈staffdept〉〉 nodes become tables, the nodes linked to them
become columns in those tables. The remaining ⊆ constraints become foreign keys.

The final HDM schema is, however, not equivalent to a well designed SQL schema.
The algorithm has identified 〈〈dept〉〉 and 〈〈staff〉〉 as tables but there is no key column
for either table. As part of Step 3 from Figure 1 a number of target DML specific rules
to overcome cases such as this are defined. Here id node expand(〈〈dept〉〉) can be
applied to 〈〈dept〉〉 and 〈〈staff〉〉 to create 〈〈dept pk〉〉 and an edge linking it to 〈〈dept〉〉,
along with 〈〈staff pk〉〉 and an edge linking it to 〈〈staff〉〉 that represent key columns for
the tables.

6 Analysis and Experimental Results

In analysing AutoMatch, we count the number of checks for equality between the
source graph structures and those of the target DML. If we let the number of objects in
the graph be numo and the number of constructs, including all variants, in the target

72 A. Smith and P. McBrien

dept
staff pk
00
00
00

staffdept
staffdeptstaff staffdeptdept
00 01
00 06
00 09

dept
dept pk dname
01 Finance
06 HR
09

person
id name
1 John Smith
2 Peter Green

deptperson
deptpersondept deptpersonid
01 1
06 2

deptperson.deptpersondept → dept.dept pk, deptperson.deptpersonid → person.id
staffdept.staffdeptstaff → staff.staff pk, staffdept.staffdeptdept → dept.dept pk

Fig. 11. Translated SQL Schema

DML be nums, then the total number of checks is numo × nums. This is O(numo) in
the number of objects in the schema, since nums is a constant. In the example nums is
four since there are four different constructs in the SQL model that we represent in the
HDM.

We can analyse AutoTransform by counting the number of times we need to run Au-
toMatch. In the worst case, no structures in the source graph are identified as matching
target structures by AutoMatch, and we will need to iterate numo times. If we further
assume we have numt different composite transformations to choose from, and a world
space graph of depth x, in a worst case scenario we will need to visit (numo ×numt)x

nodes in the world space graph. Within each node of the world space graph we will
need to perform the checks in AutoMatch.

It is clearly vital to limit both the size of nume × numt and x. There is a trade off
here though. The more CTs we use the more likely we are to reach our goal in fewer
steps, but each extra one will increase the size of the world space graph exponentially.
To get around this, the CTs we use have stringent preconditions so that in practice the
number that can be chosen at each iteration of the algorithm is limited. We also want
to limit the chances of costly backtracking in the algorithm. The preconditions also
help here in that they ensure as far as possible that CTs are only chosen in the correct
circumstances. In our experiments so far we have found that very little backtracking
is necessary and in most cases the most useful transformation is chosen first. We have
successfully translated a number of different ER, SQL and XML schemas using the six
existing CTs [3] and the new CT defined in Algorithm 1.

Figure 12 shows the number of match operations verses the number of schema ob-
jects required to translate various subsets of an XML Schema representation of DBLP
into SQL. The gradient is steepest when schema objects from the source DML that have
not direct equivalent in the target DML are added to the source schema, in this case
nested XML Schema complex types. Where the graph is flatter constructs that could
be matched directly with the target model, like XML Schema attributes, were added.
Figure 13 shows matches vs schema objects for the translation of a SQL database to
ER. Again the graph is steeper when tables with foreign keys are added.

A Generic Data Level Implementation of ModelGen 73

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60 70 80 90

M
at

ch
es

Schema Objects

dblp

Fig. 12. DBLP XML Schema to SQL

 0

 10

 20

 30

 40

 50

 60

 70

 4 6 8 10 12 14 16

M
at

ch
es

Schema Objects

dblp

Fig. 13. SQL database to ER

The experimental results described here were produced using the AUTOMED [8] in-
ter model data integration tool. AUTOMED implements the BAV schema transformation
approach and uses the HDM as its UMM.

7 Related Work

The work most closely related to ours is that done by Atzeni et al in their MIDST
system [9,10]. They also generate data-level translations by composition of elementary
transformations to translate schemas and data between a number of different DMLs.
Each DML, however, is defined with a number of variants. This is not necessary with
our approach. In contrast to our schema level approach the rules they use are applied
across an entire pair of data models and must be predefined for each pair of models in
the system. Our rules are chosen at run time independently of the source DML.

The design of our UMM also differs from that used in MIDST. They create a com-
plex, high-level model that includes abstractions of all the constructs of the models the
UMM is to represent. We, on the other hand, use a set of simple UMM constructs and
use combinations of these to create any complex structures needed. This is a more flex-
ible approach and is the one most commonly adopted, Batini et al., in their survey of a
data integration methods [11], suggest that a simpler UMM has advantages over more
complex models.

Schema only implementations of ModelGen include Rondo [12] and AutoGen [13].
Numerous examples of systems for translating between specific models exist in the
literature. XML and relational schemas [14] as well as ER and relational [15] and ER
and XML schemas [16]. More recent work on object relational to SQL translation has
been done by Mork and Bernstein [17].

8 Conclusion

This paper has presented a generic data level implementation of the ModelGen model
management operator that returns the translated schema along with its data instances as

74 A. Smith and P. McBrien

well as a mapping from the source to the target schema. We have shown how a schema
and its associated data instances can be translated from one DML to another by the ap-
plication of information preserving CTs. We have described an algorithm for choosing
the most suitable CT at each stage of the translation process and a mechanism for de-
termining when a given schema matches the constructs of the target DML. Finally we
presented some experimental results. Our on going work in this area includes investi-
gating the translation of OWL schemas into the other DMLs we currently support.

References

1. Bernstein, P.A., Halevy, A.Y., Pottinger, R.: A vision of management of complex models.
SIGMOD Record 29(4), 55–63 (2000)

2. Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating richer mappings. In: SIG-
MOD Conference, pp. 1–12 (2007)

3. Boyd, M., McBrien, P.: Comparing and transforming between data models via an intermedi-
ate hypergraph data model. J. Data Semantics IV, 69–109 (2005)

4. McBrien, P., Poulovassilis, A.: A semantic approach to integrating XML and structured data
sources. In: Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068,
pp. 330–345. Springer, Heidelberg (2001)

5. Hull, R.: Relative information capacity of simple relational database schemata. SIAM J.
Comput. 15(3), 856–886 (1986)

6. McBrien, P., Poulovassilis, A.: Data integration by bi-directional schema transformation
rules. In: ICDE, pp. 227–238 (2003)

7. Weld, D.S.: An introduction to least commitment planning. AI Magazine 15(4), 27–61 (1994)
8. Boyd, M., Kittivoravitkul, S., Lazanitis, C., McBrien, P.J., Rizopoulos, N.: AutoMed: A BAV

Data Integration System for Heterogeneous Data Sources. In: Persson, A., Stirna, J. (eds.)
CAiSE 2004. LNCS, vol. 3084, pp. 82–97. Springer, Heidelberg (2004)

9. Atzeni, P., Cappellari, P., Bernstein, P.A.: Modelgen: Model independent schema translation.
In: ICDE, pp. 1111–1112 (2005)

10. Atzeni, P., Cappellari, P., Bernstein, P.A.: Model-Independent Schema and Data Transla-
tion. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm,
K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 368–385.
Springer, Heidelberg (2006)

11. Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies for
database schema integration. ACM Comput. Surv. 18(4), 323–364 (1986)

12. Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: A programming platform for generic model
management. In: SIGMOD Conference, pp. 193–204 (2003)

13. Song, G.L., Kong, J., Zhang, K.: Autogen: Easing model management through two levels of
abstraction. J. Vis. Lang. Comput. 17(6), 508–527 (2006)

14. Shanmugasundaram, J., et al.: Efficiently publishing relational data as XML documents.
VLDB Journal: Very Large Data Bases 10(2–3), 133–154 (2001)

15. Premerlani, W.J., Blaha, M.R.: An approach for reverse engineering of relational databases.
Commun. ACM 37(5), 42–49, 134 (1994)

16. Arijit Sengupta, S.M., Doshi, R.: XER - Extensible Entity Relationship Modeling. In: Har-
nad, J., et al. (eds.) Proceedings of the XML 2003 Conference, Philadelphia, PA, USA (2003)

17. Mork, P., Bernstein, P.A., Melnik, S.: Teaching a schema translator to produce o/r views. In:
Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp.
102–119. Springer, Heidelberg (2007)

Reconciling Inconsistent Data in Probabilistic

XML Data Integration

Tadeusz Pankowski1,2

1 Institute of Control and Information Engineering,
Poznań University of Technology, Poland

2 Faculty of Mathematics and Computer Science,
Adam Mickiewicz University, Poznań, Poland

tadeusz.pankowski@put.poznan.pl

Abstract. The problem of dealing with inconsistent data while inte-
grating XML data from different sources is an important task, necessary
to improve data integration quality. Typically, in order to remove incon-
sistencies, i.e. conflicts between data, data cleaning (or repairing) pro-
cedures are applied. In this paper, we present a probabilistic XML data
integration setting. A probability is assigned to each data source and its
probability models the reliability level of the data source. In this way, an
answer (a tuple of values of XML trees) has a probability assigned to
it. The problem is how to compute such probability, especially when the
same answer is produced by many sources. We consider three semantics
for computing such probabilistic answers: by-peer, by-sequence, and by-
subtree semantics. The probabilistic answers can be used for resolving a
class of inconsistencies violating XML functional dependencies defined
over the target schema. Having a probability distribution over a set of
conflicting answers, we can choose the one for which the probability of
being correct is the highest.

1 Introduction

In general, in data integration systems (especially in P2P data management
[12,13]) violations of consistency constraints cannot be avoided [10,15]. Data
could violate consistency constraints defined over the target schema, although
it satisfies constraints defined over source schemas considered in separation. In
the paper we focus on XML functional dependencies as constraints over XML
schemas. From a set of inconsistent values violating the functional dependency we
choose one which is most likely to be correct. The choice is based on probabilities
of data. We propose a model of calculating such probabilities using the reliability
levels assigned to data sources.

Related Work. Dealing with inconsistent data is the subject of many work
known as data cleaning [14] and consistent query answering in inconsistent
databases [2]. There are two general approaches to resolve conflicts in incon-
sistent databases [4,8,9]: (1) the user provides a procedure deciding how the
conflicts should be resolved; (2) some automatic procedures may be used – the

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 75–86, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

76 T. Pankowski

procedures can be based on timestamps (outdated data may be removed from
consideration) or reliability of data (each conflicting data has a probability of
being correct assigned to it). A model based on reliabilities of data sources was
discussed in [16] and was used for reconciling inconsistent updates in collabo-
rative data sharing. In [6], authors develop a model of probabilistic relational
schema mappings. Because of the uncertainty about which mapping is correct,
all the mappings are considered in query answering, each with its own prob-
ability. Two semantics for probabilistic data are proposed in [6]: by-table and
by-sequence semantics. Probabilities associated to data are then used to rank
answers and to obtain top-k answers to queries in such a setting.

In this paper, we discuss a probabilistic XML data integration setting, where
the probability models reliability levels of data sources. Based on these we cal-
culate probabilities associated with answers (probabilistic answers) to queries
over the target schema. We propose three semantics for producing probabilistic
answers: by-peer, by-sequence (of peers), and by-subtree semantics. Two first of
them are based on by-table and by-sequence semantics proposed in [6], but the
interpretation of probabilistic mappings as well as data integration settings are
quite different.

The main novel contribution of this paper is the introduction of the by-subtree
semantics. This semantics takes into account not only sources where the answer
comes from, but also contexts in which it occurs in data sources. Thanks to this,
the method has the advantage over other methods because the computation of
the probability is more sensitive to contexts of data in interest.

In Section 2 we introduce a motivating example and illustrate basic ideas of
reconciling inconsistent data in a data integration scenario. We show the role
of XML functional dependencies and probabilistic answers in reconciliation of
inconsistent data. In Section 3 we discuss XML schemas and XML data (XML
trees). Schema mappings and queries for XML data integration are described
in Section 4 and Section 5, respectively. In Section 6, schema mappings are
generalized to probabilistic schema mapping. They are used to define probabilistic
answers to queries. Section 7 concludes the paper.

2 Reconciliation of Inconsistent Data

To illustrate our approach, let us consider Figure 1, where there are three peers
P1, P2, and P3 along with schema trees, S1, S2, S3, and schema instances I1, I2,
and I3, respectively.

Over S3 the following XML functional dependency (XFD) [1] can be defined

/authors/author/book/title →
/authors/author/book/year,

(1)

meaning that a text value (a tuple of text values) of the left-hand path (tuple
of paths) uniquely determines the text value of the right-hand path. Let J be
an instance of S3. If in J there are two subtrees of type /authors/author/book

Reconciling Inconsistent Data in Probabilistic XML Data Integration 77

�������

�������

	�
� ����

����� �����

�����

����

����

����� ����� �������

	�
� �	���������

�����

����

���

�����
�����

������

	�
�
�����

�	��������
����

���

������

	�
�
�	
���

����
����

�����
�����

����
����

���

����

����

��������� �������

	�
�

�����

�	���������

����

���

�����
����

������

	�
�
�����

���

������

	�
�
�	
���

����
����

�����
�����

����
����

���

�	��������
����

����������

���

�����
�����

����
����

	�
�
�	
���

���

�����
����

����
����

������

	�
�
�����

���

�����
�����

����
����

������

Fig. 1. XML schema trees S1, S2, S3, and their instances I1, I2 and I3, located in peers
P1, P2, and P3

which have equal values of title, say t, and different values of year, say y1 and
y2, then we say that the set Ct

Ct = {(/authors/author/book/title : t, /authors/author/book/year : y1),
(/authors/author/book/title : t, /authors/author/book/year : y2)}

is inconsistent with respect to the XFD (1). Further on, the paths labeling values
will be omitted, so we will write Ct = {(t, y1), (t, y2)}.

Our aim is to choose such a tuple (t, y) ∈ Ct, that can be treated as the
most reliable of all tuples belonging to the inconsistent set Ct. The process of
selecting such a tuple is called reconciliation of inconsistent data. To this order
we will consider three different ways for computing probabilities for any tuple
belonging to Ct, where the probability reflects trustworthiness of being correct
for the corresponding tuple. Finally, a tuple with the highest probability will be
selected.

To build a probabilistic XML data integration setting, it will be assumed that a
numeric reliability level [16] is assigned to every peer’s partner and the following
trust policy is applied:

1. A vector r1, ..., rn of reliability levels is assigned to source schemas S1, ..., Sn,
with respect to the target schema T , Σn

i=1ri = 1. A value ri is treated as the
trustworthiness of data obtained from the source Si.

2. Reliability level will be understood as probability which will be assigned to
the mapping mi from a source schema Si to the target schema T . In this
way we can say about probabilistic schema mappings.

Now, assume that we are interested in all pairs (title, year) and that the
appropriate query q has been issued against the schema S3 on the peer P3.

78 T. Pankowski

Table 1. Answers to the query q

S1 (0.5) (C#, 2006), (XML, 2005)

S2 (0.2) (XML, 2004), (XML, 2004)

S3 (0.3) (XML, 2004), (SQL, 2004), (C#, 2005)

Assume that reliability levels of sources S1, S2, and S3 are 0.5, 0.2, and 0.3,
respectively. In Table 1 there are answers returned from the three sources.

We have seven answers, where some of them are duplicated. The answers can
be clustered into the following sets:

CXML = {(XML, 2005), (XML, 2004)},
CC# = {(C#, 2006), (C#, 2005)},
CSQL = {(SQL, 2004)},

where CXML and CC# are inconsistent. Thus, we have to decide which of two
answers (XML, 2005) or (XML, 2004) is more certain, similarly for (C#, 2006)
and (C#, 2005). As the measure of uncertainty we assign probabilities to an-
swers, where probabilities are calculated using reliability levels of data sources.

To calculate probability of data in the target instance, the following three
semantics will be discussed: by-peer, by-sequence, and by-subtree semantics.

By-peer semantics.

Any mapping is considered as a separate event in the space of elementary
events. Then probability of data depends only on the peer (data source) where
the data comes from. If the same data comes from many sources then its prob-
ability is the sum of probabilities of these sources. In [6] this way of creating
probabilistic data is referred to as by-table semantics.

In Table 3 we can find probabilities of answers according to the by-peer se-
mantics. Note that the fact that the tuple (XML, 2004) is returned two times
from S2, has no impact on the final probability of this tuple.

By-sequence semantics.

In this approach, any sequence of mappings (of a given length) is considered
as a separate event in the space of elementary events. Then probability of data
depends not only on the mapping creating the data but also on the context
in which it is created. In [6], this way of creating probabilistic data is called
by-sequence semantics.

In Table 2 there are sequences of mappings of length 2, where a sequence
(mi, mj) maps an instance, (Ii, Ij) of the pair of schemas (Si, Sj) into an in-
stance J of the schema S3, 1 ≤ i, j ≤ 3. The probability of each sequence is
the multiplication of probabilities of composing mappings, e.g. Prob(m1, m3) =
Prob(m1) ∗ Prob(m3) = 0.15. Using probabilities of sequences, we can deter-
mine probabilities of answers to q. The probability of an answer is the sum of

Reconciling Inconsistent Data in Probabilistic XML Data Integration 79

Table 2. Calculation of probabilities for (XML, 2004) and (XML, 2005) in the by-
sequence and by-subtree semantics

Seq Prob (XML, 2004) (XML, 2004) (XML, 2005) (XML, 2005)
by-sequence by-subtree by-sequence by-subtree

(m1, m1) 0.25 N N Y Y

(m1, m2) 0.10 Y Y Y N

(m1, m3) 0.15 Y N Y N

(m2, m1) 0.10 Y Y Y Y

(m2, m2) 0.04 Y Y N N

(m2, m3) 0.06 Y Y N N

(m3, m1) 0.15 Y Y Y Y

(m3, m2) 0.06 Y Y N N

(m3, m3) 0.09 Y Y N N

Table 3. Probabilities of answers to q in three semantics

Tuple By-peer By-sequence By-subtree

(C#, 2006) 0.5 0.75 0.5

(XML, 2005) 0.5 0.75 0.5

(XML, 2004) 0.5 0.75 0.6

(SQL, 2004) 0.3 0.51 0.3

(C#, 2005) 0.3 0.51 0.3

probabilities of these sequences which return the answer (denoted in the relevant
columns in Table 2 by Y). Observe that, like in the case of by-peer semantics,
the probability of an answer does not depend on the number of occurrences of
the answer in the source.

By-subtree semantics.

In this method we also consider sequences of mappings, but probabilities of
answers are computed in a different way. Our aim is to make the probability of
an answer dependent on the number of contexts in which the answer occurs. For
example, (XML, 2004) occurs in two contexts within I2 (and also in the target
instance J = I1∪I2∪I3), i.e. in the context of ”Ann” and the context of ”John”.
A context will be understood as a subtree (a highest-level subtree) in the target
instance J . The subtree is identified by a key value. There are two subtrees in
our running example, the Ann-subtree, and the John-subtree, corresponding to
key values ”Ann” and ”John”, respectively. The subtrees are ordered in the
document order.

Let (a1, ..., as) be a tuple of key values determining subtrees in the target
instance J . Let (m1, ..., ms) be a sequence of mappings from source instances
to J . The probability of the sequence (m1, ..., ms) is taken into account while
computing probability of an answer ans, if ans is inserted into the ai-subtree by
the mapping mi, for some 1 ≤ i ≤ s.

80 T. Pankowski

For example, the sequence (m1, m3) returns (XML, 2004). However, it is re-
turned by the second mapping, i.e. m3, and inserted into the first subtree, i.e.
the Ann-subtree. Thus, the probability of (m1, m3) is not taken into account
while computing the probability of (XML, 2004) (see Table 2) according to the
by-subtree semantics – denoted by N in the by-subtree column. However, it is
taken into account by the by-sequence semantics.

In comparison to the by-peer and by-sequence semantics, the by-subtree better
assess trustworthiness of answers. It takes into account the number of contexts in
which the answer occurs. For example, since (XML, 2004) occurs in two contexts
in the source I2, the by-subtree semantics takes it into account and in the result
its probability is higher than this of (XML, 2005).

3 XML Schemas and Instances

In this paper, XML schemas will be specified by tree-pattern formulas [3,13]. It
means that we will restrict ourselves to a subset of XML schemas – namely, to
schemas without recursions and alternatives.

Definition 1. A schema over a set L of labels conforms to the syntax:

S ::= /l[E]
E ::= l = x | l[E] | E ∧ ... ∧ E,

(2)

where l ∈ L, and x is a variable. If variable names are significant, we will write
S(x), where x is a vector of text-valued variables.

Example 1. The schema S3 in Figure 1 has the following specification:
S3(x1, x2, x3) := /authors[author[name = x1 ∧ book[title = x2 ∧ year = x3]]].

An XML database consists of a set of XML data. We define XML data as an
unordered rooted node-labeled tree (XML tree) over a set L of labels, and a set
Str ∪ {⊥} of strings and the distinguished null value ⊥ (both strings and the
null value, ⊥, are used as values of text nodes).

Definition 2. An XML tree I is a tuple (r, Ne, N t, child, λ, ν), where:

– r is a distinguished root node, Ne is a finite set of element nodes, and N t is
a finite set of text nodes;

– child ⊆ ({r} ∪ Ne) × (Ne ∪ N t) – a relation introducing tree structure into
the set {r} ∪ Ne ∪ N t, where r is the root, each element node has at least
one child (which is an element or text node), text nodes are leaves;

– λ : Ne → L – a function labeling element nodes with names (labels);
– ν : N t → Str ∪ {⊥} – a function labeling text nodes with text values from

Str or with the null value ⊥.

It will be useful to perceive an XML tree I with schema S over variables x, as
a pair (S, Ω) (called a description), where S is the schema, and Ω is a set of
valuations of variables in x. A valuation ω ∈ Ω is a function assigning values
from Str ∪ {⊥} to variables in x, i.e. ω : x → Str ∪ {⊥}.

Reconciling Inconsistent Data in Probabilistic XML Data Integration 81

Example 2. The instance I3 in Figure 1 can be represented by the following
description:
I3 :=(S3(x1, x2, x3),{(Ann, XML, 2004),(Ann, SQL, 2004),(John, C#, 2005)}).
An XML tree I satisfies a description (S, Ω), denoted I |= (S, Ω), if I satisfies
(S, ω) for every ω ∈ Ω, where this satisfaction is defined as follows:

Definition 3. Let S be a schema over x, and ω be a valuation for variables in
x. An XML tree I satisfies S by valuation ω, denoted I |= (S, ω), if the root r
of I satisfies S by valuation ω, denoted (I, r) |= (S, ω), where:

1. (I, r) |= (/l[E], ω), iff ∃n ∈ Ne child(r, n) ∧ (I, n) |= (l[E], ω);
2. (I, n) |= (l[E], ω), iff λ(n) = l and ∃n′ ∈ Ne(child(n, n′) ∧ (I, n′) |= (E, ω));
3. (I, n) |= (l = x, ω), iff λ(n) = l and ∃n′ ∈ N t(child(n, n′) ∧ ν(n′) = ω(x));
4. (I, n) |= (E1 ∧ ... ∧ Ek, ω), iff (I, n) |= (E1, ω) ∧ · · · ∧ (I, n) |= (Ek, ω).

A description (S, Ω) represents a class of S instances with the same set of values
(the same Ω), since elements in instance trees can be grouped and nested in
different ways. By a canonical instance we will understand the instance with the
maximal width, i.e. the instance where subtrees corresponding to valuations are
pair-wise disjoint. For example, I1 and I2 in Figure 1 are canonical, whereas I3

is not since two books are nested under one author. A canonical instance may
be transformed into a required form using specification of keys [13].

4 Schema Mappings

A schema mapping specifies the semantic relationship between a source schema
and a target schema. We define it as a source-to-target dependency [3,7,13].

Definition 4. A mapping from a source schema S to a target schema T is an
expression of the form

m := ∀x(S(x) ⇒ ∃yT (x′,y)), (3)

where x′ ⊆ x, and y ∩ x = ∅.

A mapping defines one-to-one correspondence between source and target paths.
Variable names are used to indicate correspondences between paths bound to
variables. In practice, a correspondence also involves a function that transforms
values of source and target variables. Using such functions we can express many-
to-one and many-to-many correspondences. However, in this paper these func-
tions are irrelevant to our discussion, so they will be omitted.

Example 3. The mapping from S3 to S2 is:
∀x1, x2, x3(/authors[author[name = x1 ∧ book[title = x2 ∧ year = x3]]] ⇒
∃x4/pubs[pub[title = x2 ∧ year = x3 ∧ writer[name = x1 ∧ university = x4]]]).

In the following mappings we will omit quantifications.

82 T. Pankowski

Example 4. m1, m2, and m3 are mappings from S1 to S3, S2 to S3, and S3 to
S3, respectively:

m1 := /books[book[year=x1 ∧ title=x2∧ author[name=x3∧ university = x4]
⇒ /authors[author[name = x3 ∧ book[title = x2 ∧ year = x1]]]

m2 := /pubs[pub[title =x1∧ year=x2 ∧ writer[name = x3 ∧ university = x4]]]
⇒ /authors[author[name = x3 ∧ book[title = x1 ∧ year = x2]]]

m3 := /authors[author[name = x1 ∧ book[title = x2 ∧ year = x3]]]
⇒ /authors[author[name = x1 ∧ book[title = x2 ∧ year = x3]]]

A schema mapping m from a source schema S to a target schema T expresses
a constraint, which is or is not satisfied by a pair (I, J) of XML trees, where I
and J are instances of S and T , respectively.

Definition 5. A pair (I, J) of XML trees satisfies a mapping m, (I, J) |= m,
if for any valuation ω of variables in x there is a valuation σ of variables in y
such that:

I |= (S, ω) ⇒ J |= (T, (ω′, σ)),

where ω′ is the restriction of ω to the set x′, denoted ω′ = ω[x′]. Then we say
that J is consistent with I and m.

In general, there may be zero or many different target instances J consistent
with a given source instance I and a given mapping m [7,3].

Definition 6. An XML data integration setting (XDI) is a triple (S, T,MST),
where:

– S = (S1, ..., Sn) – an ordered set of source schemas;
– T – a target schema,
– MST = (m1, ..., mn) – a set of mappings; mi is a mapping from Si to T .

The following definition specifies the notion of consistency between a target
instance J , a set of source instances (I1, ..., In) (called a complex source instance
I), and a given set of mappings (m1, ..., mn).

Definition 7. Let MST = (m1, ..., mn) be a set of mappings, where mi is a
mapping from Si to T . Let I = (I1, ..., In) be an instance of (S1, ..., Sn). We say
that a pair (I, J) satisfies MST , denoted (I, J) |= MST , if for each mi, J is
consistent with Ii and mi. Then J is said to be consistent with I and MST .

5 Queries and Answers

In this paper we consider queries which return tuples of values (valuations) as
opposed to arbitrary trees (like in [3]).

Definition 8. A query over a target schema T (x′), is an expression of the form

q := {x | ∃x′′T (x′)}, (4)

where x,x′′ ⊆ x′, x ∩ x′′ = ∅.

Reconciling Inconsistent Data in Probabilistic XML Data Integration 83

Example 5. ”Get all pairs (title,year)”, can be expressed by the following query
over the schema S3:

{(x2, x3) | ∃x1(/authors[author[name = x1 ∧ book[title = x2 ∧ year = x3]]])}
Definition 9. Let q(x) be a query over a schema T (x′) and J be an instance of
T . A valuation ω of x is an answer to q against J , denoted ω ∈ q(J), if there is
a valuation ω′ of x′ such that J |= (T, ω′) and ω = ω′[x], i.e. ω is the restriction
of ω′ on x.

Now, let us consider an answer to a query in an XML data integration setting.
Such answers in data integration settings are referred to as certain answers [11].

Definition 10. Let q(x) be a query over the target schema T in an XDI
(S, T,MST). Let I be an instance of S. A valuation ω of x is an answer (a
certain answer) to q against I, if ω is an answer to q against every J , where J
is the target instance consistent with I and MST , denoted ω ∈ q(MST (I)).

6 Probabilistic XML Data Integration Setting

Probabilistic schema mapping describes a probability distribution of a set of
(ordinary) schema mappings. As we mentioned in Section 2, the probability of a
mapping is equal to the probability (modeling the reliability) of the data source
(peer) that is the domain of the mapping. In this way we define a probabilistic
XML data integration setting.

Definition 11. A probabilistic XML data integration setting (pXDI) is a
quadruple (S, T,MST , P rob), where (S, T,MST) is an ordinary XDI, and Prob
is a probability function over MST such that for each m ∈ MST :

– Prob(m) ∈ [0, 1], and
– Σm∈MST Prob(m) = 1.

An answer to a query q in a pXDI is a pair (ω, p), where ω is an answer to q
in ordinary XDI and p is a probability assigned to ω. The probability models
uncertainty about haw reliable is data provided by ω. Three methods can be used
to compute this probability: by-peer and by-sequence semantics, which are based
on the by-table and by-sequence semantics proposed in [6], and by-subtree a new
semantics proposed in this paper. These semantics were informally discussed in
Section 2.

6.1 By-Peer Semantics

Let (S, T,MST , P rob) be a pXDI and I be a source instance of S. In the by-peer
interpretation, all the data from one source has the probability determined by
the probability of the mapping defined on this data source. The probability of an
answer ω ∈ q(MST (I)) is the sum of the probabilities of all mappings producing
this answer.

84 T. Pankowski

For example, answers in Table 1 are produced by mappings m1, m2, and m3

with probabilities 0.5, 0.2, and 0.3, respectively. The probabilities of answers,
i.e. of tuples (title, year), are given in Table 3.

Definition 12. Let q be a query over T in (S, T,MST , P rob). Let I be an in-
stance of S. Let m(ω) be the subset of MST , such that for each m ∈ m(ω),
ω ∈ q(m(I)) (if m is a mapping from Si to T , then m(I) = m(Ii)).

Let p = Σm∈m(ω)Prob(m). Then we say that the pair (ω, p) is a by-peer
answer to q with respect to I and (S, T,MST , P rob).

6.2 By-Sequence Semantics

In contrast to the by-peer semantics, where all the mappings were considered
in separation, in the by-sequence model we will consider sequences of mappings.
Thus, if there are n mappings (and also n peers and n data sources), we can
analyze sequences with length s of (not necessarily distinct) mappings, s ≥ 1.

In general, if we have n mappings, then there are ns sequences of length s.
Let (MST , P rob) be a probabilistic mapping. By seqs(MST) will be denoted
the set of all sequences of lengths s created from mappings in MST . Then we
can think of every sequence seq ∈ seqs(MST) as a separate event. Probabilities
assigned to sequences satisfy the following formulas:

Prob(seq) = Πm∈seqProb(m),
Σseq∈seqs(MST)Prob(seq) = 1.

Each sequence seq ∈ seqs(MST) creates an instance of the target schema
T . This instance will be denoted by Jseq = seq(I) =

⋃
m∈seq m(I) and it is

consistent with I and seq, i.e.:

– for each mk ∈ seq, Jseq is consistent with Ik and mk,
– for each ω, if Jseq |= (T, ω) then there is mk ∈ seq such that Ik |= (Sk, ω).

In our running example, we consider sequences of length 2. There are 9 such
sequences (see Table 2). According to the above considerations, an answer in the
by-sequence semantics is defined as follows:

Definition 13. Let q be a query over T in (S, T,MST , P rob). Let I be an in-
stance of S. Let seq(ω) be the subset of seqs(MST), such that for each seq ∈
seq(ω), ω ∈ q(seq(I)).

Let p = Σseq∈seq(ω)Prob(seq). Then we say that the pair (ω, p) is a by-
sequence answer to q with respect to I and (S, T,MST , P rob).

In Table 3 there are also probabilistic answers according to the by-sequence
semantics in our running example.

6.3 By-Subtree Semantics

While computing a probabilistic answer in the by-subtree semantics we take into
account that the answer may occur in many contexts in the target instance. The

Reconciling Inconsistent Data in Probabilistic XML Data Integration 85

more contexts in which the answer occurs the highest is the probability of the
answer (i.e. the answer is more likely to be correct). Note that the by-peer and
by-sequence semantics are not sensitive to the number of contexts containing the
considered answer.

As the contexts we assume the highest-level subtrees in the target instance.
The subtree is identified by an absolute XML key [5] or a key functional depen-
dency [1,13]. For example, for the schema S3 we can define the key functional
dependence /authors/author/name → /authors/author. In our approach this
key functional dependency can be equivalently expressed by the following path
formula [13]:

κ(x1) := /authors/author[name = x1] (5)

meaning that for a given value of x1, the value of κ(x1) contains at most one
node (the root of the subtree of type /authors/author determined by x1). Then
an instance of S3 contains as many subtrees, of type /authors/author, as there
are different text values of the path /authors/author/name.

In our running example we have two subtrees determined by ”Ann” and
”John”, respectively. Thus, we can consider sequences of length 2 of mappings as
in the by-sequence semantics. However, we will use another semantics to compute
probabilities of answers (as was informally discussed in Section 2).

Similarly as in by-sequence semantics, let q be a query over a target schema T ,
I = (I1, ..., In) be an instance of (S1, ..., Sn), and (MST , P rob) be a probabilistic
mapping. Let J be an instance of T with s subtrees, and let J be by-sequence
consistent with I and MST . Let κ(z) be the key definition over S, where z is a
vector of text variables. Then there are s different values of z, say a1,..., as.

In the by-subtree semantics, probabilistic answers of q are defined as follows:

Definition 14. Let subtree(ω) be the subset of seqs(MST), such that for each
seq = (m1, ..., ms) ∈ subtree(ω)

ω ∈ q[z �→ a1](m1(I))) ∪ · · · ∪ q[z �→ as](ms(I))),

where q[z �→ ai] is a query created from q by substituting variables in z (the key
variables) by text values from the vector ai.

Let p = Σseq∈subtree(ω)Prob(seq). Then we say that ω is a by-sebtree answer
to q with probability p, with respect to I and (MST , P rob).

Example 6. For the sequence (m1, m2) of mappings (Example 4), the query q
(Example 5), and the key (5), we have (compare Table 2):

q[x1 �→ ”Ann”](m1(I1)) = {(C#, 2006)},
q[x1 �→ ”John”](m2(I2)) = {(XML, 2004)}.

7 Conclusion

In this paper we discussed an approach to probabilistic XML data integration
systems. We use probabilities to model reliabilities of data sources and use them

86 T. Pankowski

to compute probabilistic answers. We discuss three ways to determine probabilis-
tic answers: by-peer, by-sequence, and by-subtree semantics. We claim that the
by-subtree semantics has the advantage over two others, since it more precisely
computes probabilistic answers. This is significant contribution of this paper.
Probabilities associated to inconsistent answers can be used to select these which
are more likely to be correct and can be used to resolve inconsistencies violating
XML functional dependencies.

Acknowledgement. The work was supported in part by the Polish Ministry of
Science and Higher Education under Grant N516 015 31/1553.

References

1. Arenas, M.: Normalization theory for XML. SIGMOD Record 35(4), 57–64 (2006)
2. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent Query Answers in Inconsistent

Databases. In: PODS, pp. 68–79 (1999)
3. Arenas, M., Libkin, L.: XML Data Exchange: Consistency and Query Answering.

In: PODS Conference, pp. 13–24 (2005)
4. Bohannon, P., Flaster, M., Fan, W., Rastogi, R.: A Cost-Based Model and Ef-

fective Heuristic for Repairing Constraints by Value Modification. In: SIGMOD
Conference, pp. 143–154 (2005)

5. Buneman, P., Davidson, S.B., Fan, W., Hara, C.S., Tan, W.C.: Reasoning about
keys for XML. Information Systems 28(8), 1037–1063 (2003)

6. Dong, X.L., Halevy, A.Y., Yu, C.: Data Integration with Uncertainty. In: VLDB,
pp. 687–698. ACM, New York (2007)

7. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Composing Schema Mappings:
Second-Order Dependencies to the Rescue. In: PODS, pp. 83–94 (2004)

8. Fuxman, A., Fazli, E., Miller, R.J.: ConQuer: Efficient Management of Inconsistent
Databases. In: SIGMOD Conference, pp. 155–166 (2005)

9. Greco, G., Lembo, D.: Data Integration with Preferences Among Sources. In:
Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288,
pp. 231–244. Springer, Heidelberg (2004)

10. Greco, S., Sirangelo, C., Trubitsyna, I., Zumpano, E.: Preferred Repairs for In-
consistent Databases. In: IDEAS 2003, pp. 202–211. IEEE Computer Society, Los
Alamitos (2003)

11. Lenzerini, M.: Data Integration: A Theoretical Perspective. In: Popa, L. (ed.)
PODS, pp. 233–246. ACM, New York (2002)

12. Madhavan, J., Halevy, A.Y.: Composing Mappings Among Data Sources. In:
VLDB, pp. 572–583 (2003)

13. Pankowski, T.: XML data integration in SixP2P – a theoretical framework. In: EDBT
2008 Workshop on Data Management in P2P Systems, ACM Digital Library (2008)

14. Rahm, E., Do, H.H.: Data Cleaning: Problems and Current Approaches. IEEE
Data Eng. Bull. 23(4), 3–13 (2000)

15. Staworko, S., Chomicki, J., Marcinkowski, J.: Preference-Driven Querying of Incon-
sistent Relational Databases. In: Grust, T., Höpfner, H., Illarramendi, A., Jablonski,
S., Mesiti, M., Müller, S., Patranjan, P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen,
J. (eds.) EDBT 2006. LNCS, vol. 4254, pp. 318–335. Springer, Heidelberg (2006)

16. Taylor, N.E., Ives, Z.G.: Reconciling while tolerating disagreement in collaborative
data sharing. In: SIGMOD Conference, pp. 13–24. ACM, New York (2006)

A Semantics for a Query Language

over Sensors, Streams and Relations

Christian Y.A. Brenninkmeijer, Ixent Galpin,
Alvaro A.A. Fernandes, and Norman W. Paton

School of Computer Science, University of Manchester,
Manchester M13 9PL, United Kingdom

{brenninkmeijer,ixent,alvaro,norm}@cs.man.ac.uk

Abstract. We introduce a query language over sensors, streams and re-
lations and formally describe its semantics. Although the language was
specifically designed for sensor network querying, where data is pulled
into streams, the semantics contributed in the paper also encompasses
the case in which data is pushed onto streams or else lies stored in classi-
cal relations. The approach taken is that continuous queries over streams
are an extension of classical queries over stored extents. Apart from the
fact that query evaluation over streams is reactive, or periodic, the main
difference is the conception of windows as an additional collection type
with the consequent use of type converter operations to and from streams
and windows (which, as bounded collections of tuples, can be operated
on in a relational-algebraic setting). The language and the semantics we
provide for it advance on previous work in being more comprehensive
with respect to the collection types allowed and in being more flexible as
to the number and content of the windows contributing to the result at
each evaluation event of a continuous query. The formalization advances
on previous work in clarifying the implementation onus.

Keywords: Stream/Sensor Network Data, Query Language Semantics.

1 Introduction

Data streams [4,9] have become an important information resource in both com-
mercial and scientific contexts. In the last ten years, many query languages and
stream data management systems have been designed and implemented [1, 2, 5,
6,7,13]. This burst of activity stems, at least in part, from the fact that certain
characteristics of data streams challenge some foundational assumptions under-
pinning classical database management systems. Among the many issues raised
in [4], this paper focusses on the issue of assigning a semantics to continuous
queries over extents with unbounded size in the presence of blocking opera-
tors. One of the issues arising is that blocking operations such as cross-product
(and hence, in general, joins) and group-by aggregation are not well-defined over
unbounded extents.

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 87–99, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

88 C.Y.A. Brenninkmeijer et al.

While systems and languages that constrain themselves to operating on un-
bounded extents exist (e.g., [7]), most rely on one or more mechanisms to cope
with the unbounded cardinality of data streams. Broadly, one may resort to data
reduction techniques (e.g., filtering, data merging and data dropping, synopses
and sketches) or one may characterize bounded subsets of the stream that one
can operate upon using either punctuation (thereby relying on stream semantics)
or sliding windows. A variation on the latter relies on materializing bounded sub-
sets of the stream as views. A survey of most of these techniques is given in [12].
We focus on windows as the mechanism to cope with unbounded cardinality.

The remainder of the paper is structured as follows. Sec. 2 briefly describes the
background for the paper, its motivation and the contributions reported, which
centre on a query language over sensors, streams and relations called SNEEql.
Sec. 3 describes the SNEEql data model; Sec. 4, its syntax; Sec. 5, its translation
to a logical algebra; and Sec. 6, the formal definition of the algebraic operators.
Sec. 7 draws contrasts with related work, Sec. 8 concludes the paper.

2 Background, Motivation, Contributions

Two of the questions raised in [4] as providing directions for future work implic-
itly touch on the issue of the semantic relationship between streams and classical
relations as they impact on the data modelling and query language traditions.
Semantic issues have been explored informally by most system-description pa-
pers [1,2,5,6,7,13], but formal accounts [1,3,11] are comparatively fewer, often
not exhaustive, and not as informative as could be wished by an implementer.

We explore the relationship of window-based continuous query semantics
over streams and relations. In particular, our treatment encompasses push-based
streams (which have been predominant in the literature so far) and pull-based
streams (as arise in sensor network query processing [10,14]). Our treatment as-
signs a semantics to queries over unbounded streams and over bounded subsets
of unbounded streams. While this paper does not provide a detailed account
of it, the semantics for continuous queries we describe can accommodate clas-
sical queries as the special case of one-off queries over stored extents only. In
this way, the paper contributes a wide-ranging account that is distinctive in
encompassing (1) streams and relations, (2) push- and pull-based streams, and
(3) blocking and non-blocking operators, and that clarifies the relationship with
classical relational-algebraic semantics. Our approach is inspired by CQL [2] in
that we also view windows as a collection type resulting from a conversion op-
eration that maps from unbounded extents (i.e., streams) to bounded ones (i.e.,
relations, as bags of tuples), thereby allowing both non-blocking and blocking
operators to be supported. The account given here advances on previous work in
providing a formal, unified account for more expressive queries than previously
done. Thus, the reactive, or periodic, nature of result production is explained in
terms of tuples that either simply arrive in push-based streams, or are acquired
from sensors, or are scanned from stored tables. If windows are used, slide events
may be triggered by new inputs and evaluation may produce new results.

A Semantics for a Query Language over Sensors, Streams and Relations 89

Secs. 3-6 describe (briefly, due to the space constraints) the underlying data
model used in SNEEql and the syntax and semantics of the language. Discussion
of related work then follows.

3 SNEEql Data Model

The primitive types are integer, float, string and time. The compound types
are tuple and tagged tuple. A tuple type consists of a set of typed attributes,
a1 : t1, . . . , an : tn, where each ai is an attribute name and each ti is a prim-
itive type. A tagged tuple type is a tuple type including two distinguished
attributes: one, named tick, of type integer, and another, named index, of
type integer. Values of type tick are drawn from a system-wide ordinal do-
main, those of type index are ordered inside the collection in which they appear.
A tick value denotes the timestamp in which a tagged tuple was created, an
index value denotes its position in a sequence where it was placed. The collection
types are window and stream. A window type is a pair whose first element is a
distinguished attribute, named tick, of type integer, denoting the timestamp
in which the window was created, and whose second element is of type bag of
tuples of the same tuple type. A stream is a potentially infinite, append-only
sequence of values of the same tagged tuple or window type.

As an example SNEEql schema, consider a system with access to (1) road
sensors that detect temperature and vibration levels every minute at four sites
(named 1,2,3, and 4); (2) a push stream that reports, at a frequency of its
choosing, the weight and class of passing traffic; and (3) a table of temperature
classes. The schema could be expressed as follows:

road: sensed (site:integer, time:integer, temp:integer, vibration:integer)
traffic: pushed (site:integer, time:integer, weight:integer, vehicle:integer)
tempClass: stored (temp:integer, category:string)

Sensed extents are pull-based, i.e., associated with a declared acquisition rate
(one tuple per minute per site, in this example), and for this reason can also be
referred to as acquisitional. Streamed extents are push-based, i.e., associated with
an unknown, presumed variable, arrival rate. From the viewpoint of continuous
SNEEql queries, both sensed and pushed extents, like road and traffic, are streams
of tagged tuples, whereas stored extents, like tempClass, are streams of windows,
as described further below. Note that tick and index are implicitly-defined
attributes of tagged tuples, as is tick for windows.

4 SNEEql Syntax

This section introduces the kinds of SNEEql queries whose semantics is described
in later sections, viz., stream queries and windows queries. Stream queries are
of the form SELECT a1 . . . an FROM s WHERE p where a1 . . . an is a project list, s
denotes a stream of tagged tuples (i.e., either the name of a sensed or pushed

90 C.Y.A. Brenninkmeijer et al.

extent, or a subquery of type stream), and p is a predicate. Restrictions on
stream queries that are relaxed for window queries (described below) include:
the FROM clause must reference a single stream because cross product is not
well defined over infinite collections; and the projection list elements ai cannot
apply aggregate operations over values from s. Evaluating a stream query yields
a stream of tagged tuples. Let Q1 be the following acquisitional stream query:

SELECT road.time, road.site, road.vibration
FROM road
WHERE road.temp < 50 AND road.vibration > 20

Window queries are of the form:
SELECT a1 . . . an FROM w1 . . . wm WHERE p

where a1 . . . an is a project list, w1 . . . wm is a list of window definitions, and p is a
predicate. Window queries can be extended with GROUP BY and HAVING clauses:
these are not described here due to space constraints. Evaluating a window query
yields a stream of windows. Each wi in the FROM clause refers to either a streamed
(sensed or pushed) or a stored extent, as follows.

A window on a stream is of the form s[FROM t1 TO t2 SLIDE int unit], where
s denotes a stream of tagged tuples (i.e., either the name of a sensed or pushed
extent, or a subquery of type stream), and both ti are either of the form NOW or
NOW− int, where NOW denotes the current tick or index, int is a positive integer,
and unit ∈ {SEC, MIN, HOUR, ROWS}. The FROM and TO parameters define a window
that selects all tuples in s in the range relative to when the window is created,
while the SLIDE parameter determines how often a new window is created.

A window on a table is of the form t[SCAN int timeUnit], where t is a table,
int is a positive integer, and timeUnit ∈ {SEC, MIN, HOUR}. The SCAN parameter
indicates how often the table t is scanned and a window created that contains
the result of the scan.

Let Q2 be a window query in SNEEql that requests the minimum temperature
and maximum vibration from the road sensors over the last 10 minutes, but only
for sites and times where the traffic stream reported a vehicle passing. Q2 returns
a stream of windows and can be written as follows:

SELECT MIN(temp), MAX(vibration)
FROM road [FROM NOW-10 TO NOW SLIDE 1 MIN],

traffic [FROM NOW-10 TO NOW SLIDE 1 ROW]
WHERE road.site=traffic.site AND road.time=traffic.time

The result of a SNEEql window query can be converted into a stream using the
CQL [2] type-conversion functions RSTREAM, ISTREAM and DSTREAM (see Section
6.3). The next query, Q3, shows how SNEEql allows data acquired from sensors
to be combined with stored data scanned from a table. Q3 returns a stream of
tuples and can be written as follows:

ISTREAM(SELECT road.site, tempClass.category
FROM road [FROM NOW-5 TO NOW SLIDE 5 MIN],

tempClass [SCAN 10 MIN]
WHERE tempClass.temp = road.temp)

A Semantics for a Query Language over Sensors, Streams and Relations 91

5 SNEEql Translation to a Logical Algebra

The SNEEql semantics contributed in this paper is defined in terms of a mapping
to a logical algebra, whose operators are defined using Haskell1. This section
both introduces the algebra and describes the mapping from SNEEql. Stream
queries are mapped to the algebra as follows:

SELECT a1 . . . an FROM s WHERE p
⇒ evaluateStream (StreamProject [a1 . . . an] (

StreamSelect (p) (
StreamAcquire (s, s.acquisitionInterval, s.sites))))

where, given an instance of an operator on streams, evaluateStream returns the
stream that results from evaluating that operator. The operators are further de-
scribed in Sec. 6, but their arguments are now briefly explained. StreamProject
takes a list of projection expressions and the stream from which their values are
obtained. StreamSelect takes a predicate expression and the stream over which
it is applied as a filter. StreamAcquire takes the name, the acquisition interval
and the sensing sites from which the desired stream of data is obtained. For
example, Q1 from Sec. 4 maps to the following algebraic expression:

evaluateStream (
StreamProject [Attr ”road.time”, Attr ”road.site”, Attr ”road.vibration”] (
StreamSelect (Predicate ”road.temp>50 and road.vibration>20”) (
StreamAcquire ”road” (Tick 60) [1,2,3,4])))

Window queries are mapped to the algebra as follows:

SELECT a1 . . . an FROM w1 . . . wm WHERE p
⇒ evaluateWindow (WindowProject [a1 . . . an] (

WindowSelect (p) (
WindowCrossProduct (w1), . . ., (wm))))

where, given an instance of an operator on streams of windows, evaluateWindow
returns the stream of windows that results from evaluating that operator. The
operators are further described in Sec. 6, but their arguments are now briefly
explained. WindowProject takes a list of projection expressions and the stream
from which their values are obtained. WindowSelect takes a predicate expression
and the stream over which it is applied as a filter. WindowCrossProduct takes
the operators that yield the windows to which the cross product is applied.
The translation of a window operator, whose argument is a window definition,
depends on the form of the latter. For example, a time window definition over
an acquisitional stream is mapped to the algebra as follows:

s[FROM t1 TO t2 SLIDE int timeUnit]
⇒ evaluateWindow (TimeWindow (TimeScope(t1.offset ,t2.offset), slide) (

evaluateStream (StreamAcquire (s, s.acquisitionInterval, s.sites))))

1 In the Haskell notations used, lower case is used to name variables and functions;
upper case is used to name types and constructors.

92 C.Y.A. Brenninkmeijer et al.

where TimeWindow takes two offsets relative to NOW, which define the endpoints
of the window on s; the slide value, which indicates how frequently windows are
created; and the stream from which tuples are obtained for creating the window.
For example, Q3 from Sec. 4 maps to the following algebraic expression:

evaluateStream(IStream (
WindowProject [Attr ”road.site”, Attr ”tempClass.category”] (

WindowSelect (Predicate ”tempClass.temp=road.temp”) (
WindowCrossProduct (
TimeWindow (TimeScope ((Tick (-300)) (Tick 0)) (Tick 300)) (
StreamAcquire ”road” (Tick 60) [1,2,3,4])) (

Scan (Tick 600) ”tempClass”)))))

where most of the operators have been introduced except IStream, which returns
an output stream of tagged tuples containing the tuples most recently added to
its input; and Scan, which, given the name of a stored extent and a time interval,
returns the stream of windows that results from scanning the given table with
a frequency governed by the scanning interval.

6 Semantics of the SNEEql Logical Algebra

The semantics of the algebra introduced in Sec. 5 is defined in this section using
Haskell. Because Haskell is a lazy, pure functional programming language, the
computation of a value is deferred until it is needed. This allows us to represent
streams as unbounded lists and operators as functions which take as input and
return unbounded lists. The Haskell definitions of the operators aim at clarity,
not space- and time-efficiency. Note that even though SNEEql was designed to run
over sensor networks as a distributed query evaluation system [8], the semantics
does not take distributed execution into account because, in practice, in-network
query evaluation is carried out through the translation of the logical algebra
into a parallel algebra, in which the semantics of operators in the logical algebra
is preserved. The semantics is organized as follows: Sec. 6.1 defines operators
that return streams of tuples, and which together support stream queries;
Sec. 6.2 defines operators that return streams of windows, and which together
with the operators from Sec. 6.1 support window queries; and Sec. 6.3 describes
operators for converting from windows to tuple streams.

In the Haskell notations, a declaration e :: t asserts the expression e to
be of type t. For example, the increment function may be declared as inc ::
Integer -> Integer. The expression h:t denotes the list with head h and tail
t. List concatenation is denoted by ++, list difference by \\. The expression e ==
ee is true iff e and ee are equal. The expression id = e binds the expression e
to the name id. If h = 1 and t = 2:3:[], then h:t == [1,2,3] is true. Local
definitions use let e in ee blocks. Given a function f and a list L, map returns
the list that results from applying f to each l ∈ L. Given a function f from type
a to type Bool and a list L of elements of type a, filter returns l ∈ L such
that f is true of l.

A Semantics for a Query Language over Sensors, Streams and Relations 93

evaluateStream :: StreamOp->[TaggedTuple]

evaluateStream (StreamAcquire sourceName tick sites) =

acquire sourceName tick sites (Tick 0) (Index 1)

evaluateStream (StreamReceive source) = receive source

evaluateStream (StreamSelect predicate streamOp) =

filter (predicateOnTaggedTuple predicate) (evaluateStream streamOp)

evaluateStream (StreamProject projectList streamOp) =

map (projectOnTaggedTuple projectList) (evaluateStream streamOp)

evaluateStream (RStream windowOp) =

rStream (Index 1) (evaluateWindow windowOp)

evaluateStream (IStream windowOp) =

iStream (Index 1) [] (evaluateWindow windowOp)

evaluateStream (DStream windowOp) =

dStream (Index 1) [] (evaluateWindow windowOp)

Fig. 1. Definition of evaluateStream

6.1 Tuple Stream Operators

A tuple stream is represented as a lazily evaluated list of tagged tuples. Oper-
ations that return tuple streams fall into the following groups: input operators,
which obtain data from sensors and from pushed streams; filtering operators,
which select or project tuples, and conversion operators, which generate a tuple
stream from a stream of windows (and whose definition is postponed to Sec. 6.3).
The definition of evaluateStream is in Fig. 1.

Input. The leaf operators in tuple stream queries either acquire data from sensors
or receive data from pushed streams. StreamAcquire is defined using acquire
(in Fig. 2). Given the name of a sensed extent, the acquisition interval, the list
of associated sites, the tick at which to take a reading and the index of the next
value to be read, acquire returns a potentially infinite list of tagged tuples. The
function lookupAttributes returns the list of attribute names for a sensed ex-
tent. The function getData abstracts away from low-level calls to physical sen-
sors. In Haskell, this can be simulated by generating readings of individual tuples
at the specified points in time. StreamReceive is defined using receive::String
-> [TaggedTuple]. Given the name of a pushed extent, receive returns a poten-
tially infinite list of tagged tuples. Unless a tuple arrives timestamped, it is tagged
with the current tick at its arrival, and assigned an index. The function abstracts
away from a port onto which an external source can write. In Haskell, this can
be simulated by generating a variable number of tuples at variable intervals. The
semantics of other operators accommodates multiple tuples with the same times-
tamp, as well as timestamps for which there are no tuples.

Filtering. Filtering operators are applied to each tuple independently. Stream-
Project is defined using map (see Fig. 1) to apply projectOnTaggedTuple (in
Fig. 3) to each tuple in the stream. Given an attribute list and a tagged tuple,

94 C.Y.A. Brenninkmeijer et al.

acquire::String->Tick->[Int]->Tick->Index->[TaggedTuple]

acquire sourceName acquisitionInterval sites now index =

let attributeNames = lookupAttributes sourceName

in let tuples = acquireTuples attributeNames now index sites

in let nextTick = (now + acquisitionInterval)

in let nextIndex = index + Index (length sites)

in tuples ++ acquire sourceName

acquisourceNamerval sites nextTick nextIndex

acquireTuples::[AttributeName]->Tick->Index->[Int]->[TaggedTuple]

acquireTuples _ _ _ [] = []

acquireTuples attributeNames tick index (site:sites) =

let tupleData = map (getData tick site) attributeNames

in [TaggedTuple tick index (Tuple attributeNames tupleData)]

++ acquireTuples attributeNames tick (inc index) (sites)

Fig. 2. Definition of acquire

projectOnTaggedTuple :: [AttributeName]->TaggedTuple->TaggedTuple

projectOnTaggedTuple attributeNames(TaggedTuple tick index tuple)=

TaggedTuple tick index (projectOnTuple attributeNames tuple)

projectOnTuple :: [AttributeName]->Tuple->Tuple

projectOnTuple attributeNames tuple =

Tuple attributeNames (map (getAttribute tuple) attributeNames)

Fig. 3. Definition of projectOnTaggedTuple

projectOnTaggedTuple returns a tagged tuple that retains from the input tuple
the tick, the index and the attributes named in the list. StreamSelect is
directly defined using filter (see Fig. 1).

6.2 Window Stream Operators

A window stream is represented as a lazily evaluated list of windows. Operations
that return window streams fall into the following groups: input operators that
obtain windows from stored tables, creation operators that generate windows
from streams, single-window operators that are applied to the individual windows
in a stream independently, and multiple-window operators that act on windows
from more than one stream. The definition of evaluateWindow is in Fig. 4.
Input. Most window streams are obtained from tuple streams, as described
below. However, tables can be scanned at regular intervals, thereby allowing
SNEEql queries to access stored data (e.g., in normal databases, or in persistent
memory or in data loggers in sensor networks). Scan is defined using the function
scan (see Fig. 5) which, given the name of a stored extent, the scanning interval
specified in the query, and the current tick, returns the stream of windows that
results from scanning the table. The function scanTable abstracts away from

A Semantics for a Query Language over Sensors, Streams and Relations 95

evaluateWindow :: WindowOp->[Window]

evaluateWindow (Scan tick tableName) = scan tableName tick (Tick 0)

evaluateWindow (TimeWindow windowScope tick streamOp) =

createTimeWindow windowScope tick (Tick 0) (evaluateStream streamOp)

evaluateWindow (RowWindow windowScope index streamOp) =

createRowWindow windowScope index index (evaluateStream streamOp)

evaluateWindow (WindowSelect predicate windowOp) =

map (selectOverWindow predicate) (evaluateWindow windowOp)

evaluateWindow (WindowProject attributeNames windowOp) =

map (projectOnWindow attributeNames) (evaluateWindow windowOp)

evaluateWindow (WindowAggregation attributeNames windowOp) =

map (aggregateOverWindow attributeNames) (evaluateWindow windowOp)

evaluateWindow (WindowCrossProduct leftWindowOp rightWindowOp) =

crossProduct (evaluateWindow leftWindowOp)

(evaluateWindow rightWindowOp)

Fig. 4. Definition of evaluateWindow

scan :: String->Tick->Tick->[Window]

scan tableName scanInterval now =

let window = Window now (scanTable now tableName)

in [window] ++ scan tableName scanInterval (now+scanInterval)

Fig. 5. Definition of scan

the access to an external table. In Haskell, this can be simulated by generating
bags of tuples at the specified points in time.
Creation. Window creation operators take as input a stream of tuples and
output a stream of windows. Window creation involves determining when to
create a new window and which tuples to include in the window. RowWindow
is defined using createRowWindow (see Fig. 6), which, given the offsets, the
slide, the current index and the input tuple stream, returns a window stream
in which windows are created containing tuples from the tuple stream with a
frequency that respects the slide and a size that reflects the number of tuples
that satisfy the offsets. As the offsets that characterize window membership are
expressed relative to the current index, getWindowTuples simply drops tuples
whose index is less than currentIndex adjusted by the FROM offset or greater
than currentIndex adjusted by the TO offset. Note that since SNEEql was de-
signed to query sensor networks, windows are not created at every tick as in [2].
Instead, windows are created at the frequency requested, through the specified
slide. There can be zero, one or many windows created at each tick. TimeWindow
differs from RowWindow only in that the window membership test is applied to
timestamps rather than to indexes, so the definitions are omitted due to space
constraints.
Single- and Multiple-Window Operators. The operators WindowSelect,
WindowProject and WindowAggregation are evaluated over each window in a

96 C.Y.A. Brenninkmeijer et al.

createRowWindow :: WindowScope->Index->Index->[TaggedTuple]->[Window]

createRowWindow windowScope slide index taggedTuples =

let tuples = takeWhile (lessEqualsIndex index) taggedTuples

in let(TaggedTuple now lastIndex lastTuple) = last tuples

in [Window now (getWindowTuples windowScope now index tuples)]

++ createRowWindow windowScope slide (index+slide) taggedTuples

getWindowTuples::WindowScope->Tick->Index->[TaggedTuple]->[Tuple]

getWindowTuples _ _ _ [] = []

getWindowTuples windowScope@(RowScope from to)now currentIndex input =

let passedFrom=dropWhile (lessThanIndex (currentIndex + from))input

in let window=filter (lessEqualsIndex(currentIndex + to))passedFrom

in map getTuple window

Fig. 6. Definition of createRowWindow

crossProduct :: [Window]->[Window]->[Window]

crossProduct left right =

let ticks = getTickUnion left right

in tickCrossProduct ticks left right

tickCrossProduct :: [Tick]->[Window]->[Window]->[Window]

tickCrossProduct (tick:ticks) left right =

let leftTick = findLastTick tick left

in let rightTick = findLastTick tick right

in let leftWindows = getWindowsAtTick leftTick left

in let rightWindows = getWindowsAtTick rightTick right

in let windowPairs = mapMap windowCrossProduct leftWindows rightWindows

in windowPairs ++ tickCrossProduct ticks left right

windowCrossProduct :: Window->Window->Window

windowCrossProduct (Window leftTick leftTuples)

(Window rightTick rightTuples) =

let windowTick = maxTick leftTick rightTick

in let tuples = mapMap concatTuples leftTuples rightTuples

in Window windowTick tuples

Fig. 7. Definition of windowCrossProduct

stream of windows individually, as if each were a relation (see Fig. 4). The tick
of a window is not changed by the application of a single-window operator.

Multiple-window operators relate windows from more than one stream. Only
WindowCrossProduct is considered here (see Fig. 7), but, in our sensor network
implementation [8], we rely on the optimizer to rewrite selections over cross
products into joins. Many stream systems, such as CQL, map one window per
stream to every tick, so that the cross product of two streams of windows is the
cross product of the two windows mapped to each tick. Because in SNEEql, there
may be zero, one or many windows at each tick, the cross product operator has

A Semantics for a Query Language over Sensors, Streams and Relations 97

been extended to deal with ticks for which there is not necessarily exactly one
window in each stream. To avoid unnecessary work, cross product only occurs
at ticks where at least one of the streams contains a window. Given two window
streams, crossProduct identifies these ticks and executes a cross product at
each such tick. At each identified tick, the most recent window(s) in each stream
at or before this tick are identified. Every such window identified in each stream
is combined with those from the other stream, thereby creating a new window
for each pair. The windowCrossProduct function takes two windows as input,
removes their tick, concatenates every tuple from one window with every tuple
from the other window, and uses the most recent timestamp found as the tick
of the new window. A mapMap function (i.e., a map on a list of lists) applies
windowCrossProduct to every pair of windows identified in tickCrossProduct
as having timestamps that should be matched.

6.3 Window-to-Stream Converters

A SNEEql query can specify that a stream of windows is to be converted into
a stream of tuples using the keywords RSTREAM, ISTREAM and DSTREAM from
CQL [2]. In combination with the TimeWindow and RowWindow operators, the
corresponding conversion operators enable window queries to be nested within
the FROM clauses of stream queries, and vice versa. RStream is defined using the
function rStream (see Fig. 8), which, given the index of the next tuple to be
returned and the window stream from which tuples are obtained, appends to
the output stream all the tuples in each window. In common with the other
window to stream operators, each tuple in the output stream receives its tick
from its source window and a running index unique to the stream. IStream is
defined using iStream (see Fig. 8), which, given the index of the next tuple to be
returned, the tuples in the previous window, and the window stream from which
tuples are obtained, appends tuples into the output stream that were not in the

rStream :: Index->[Window]->[TaggedTuple]

rStream index ((Window tick tuples):windows) =

(append tuples tick index) ++

rStream (index + Index (length tuples)) windows

append :: [Tuple]->Tick->Index->[TaggedTuple]

append [] _ _ = []

append (tuple:tuples) tick index =

[TaggedTuple tick index tuple]++(append tuples tick (inc index))

iStream :: Index->[Tuple]->[Window]->[TaggedTuple]

iStream index previousTuples ((Window tick tuples):windows) =

let insertTuples = tuples \\ previousTuples

in (append insertTuples tick index) ++

iStream (index + Index (length insertTuples)) tuples windows

Fig. 8. Definition of rStream and iStream

98 C.Y.A. Brenninkmeijer et al.

previous window. DStream, which returns the tuples deleted from the window is
similar to IStream except for the swapped arguments in the list difference line.

7 Related Work

The literature on stream data management is quite large: we focus on window-
based accounts. With respect to sensor network query languages, no formal de-
scription of either TinyDB [10] or Cougar [14] has been published. The TinyDB
query language uses materialization points to offer limited support for blocking
operators, does not allow window specifications (other then for aggregates) and
is, therefore, less expressive than SNEEql in these respects. The Cougar query
language has not been sufficiently described to allow a meaningful contrast to
be drawn. With respect to query languages on pushed streams, CQL [2] was
given a denotational semantics [3]. While being the major inspiration behind
it, CQL is less expressive than SNEEql. For example, in assuming that there is
exactly one window associated with every tick (whereas in SNEEql, there can
be zero, one or many), and in not supporting bag of tuples (i.e., relations) as
a primitive collection type. While the denotational semantics given to CQL is
exemplary, it is, by its nature, less informative from an implementer’s viewpoint
than the one contributed in this paper, in that query language implementation
tends to build on algebras. The other previous formal treatments fail to be as
exhaustive and systematic as the one given here, in that the account in [11] only
applies to pushed, punctuated streams, while the account in [1] only applies to
pushed streams and to a significantly more constrained notion of window.

8 Conclusions

This paper has shown that a query language over streams and relations can be
given a formal semantics that clarifies the relationship between stream query
processing and classical query processing. Building on the pioneering work on
CQL [2], the paper shows that taking windows as a collection type obtained
by type-conversion operations on streams suffices to encompass more cases of
interest in the same semantic account than previously done. Thus, the paper has
shown how streams and relations, as well as push- and pull-based streams, relate
to one another in the presence of both non-blocking and blocking operators. As
shown, SNEEql advances on previous work in supporting windows without the
requirement to do so in every query. By defining a window stream as a stream
of zero, one or even many windows per tick, rather than exactly one for each
tick, SNEEql avoids having to drop windows if too many tuples arrive at once
and having to contend with repeated evaluations that produce repeated results

The semantics of SNEEql, as described in this paper, has been implemented
in Haskell, with the resulting code, using simulated inputs, acting as a SNEEql

interpreter. The subset of SNEEql that pertains to sensed extents has been fully
implemented (as was TinyDB) over a nesC/TinyOS software environment, as

A Semantics for a Query Language over Sensors, Streams and Relations 99

described in [8]. Work is in progress to accommodate, as informed by the seman-
tics contributed in this paper, pushed streams and stored extents.

Acknowledgements. This work was funded by UK EPSRC WINES EP/
C014774/1 DIAS-MC project. We are grateful for this support and to our col-
laborators in the project. C.Y.A. Brenninkmeijer thanks the School of Computer
Science.

References

1. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., et al.: Aurora: A new
Model and Architecture for Data Stream Management. VLDB J. 12(2), 120–139
(2003)

2. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. VLDB J 15(2), 121–142 (2006)

3. Arasu, A., Widom, J.: A Denotational Semantics for Continuous Queries over
Streams and Relations. SIGMOD Record 33(3), 6–12 (2004)

4. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and Issues in
Data Stream Systems. In: PODS, pp. 1–16 (2002)

5. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., et al.: Tele-
graphCQ: Continuous Dataflow Processing for an Uncertain World. In: CIDR
(2003)

6. Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: A Scalable Continuous
Query System for Internet Databases. In: SIGMOD, pp. 379–390 (2000)

7. Cranor, C.D., Johnson, T., Spatscheck, O., Shkapenyuk, V.: Gigascope: A Stream
Database for Network Applications. In: SIGMOD, pp. 647–651 (2003)

8. Galpin, I., Brenninkmeijer, C.Y.A., Jabeen, F., Fernandes, A.A.A., Paton, N.W.:
An Architecture for Query Optimization in Sensor Networks. In: Proc. ICDE (2008)

9. Golab, L., Özsu, M.T.: Issues in data stream management. SIGMOD Record 32(2),
5–14 (2003)

10. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: An Acquisitional
Query Processing System for Sensor Networks. ACM Trans. Database Syst. 30(1),
122–173 (2005)

11. Maier, D., Li, J., Tucker, P.A., Tufte, K., Papadimos, V.: Semantics of Data
Streams and Operators. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363,
pp. 37–52. Springer, Heidelberg (2004)

12. Maier, D., Tucker, P.A., Garofalakis, M.: Filtering, Punctuation, Windows and
Synopses. In: Chaudhury, N.A., et al. (eds.) StreamDataManagement, ch. 3,
Springer, Heidelberg (2005)

13. Rundensteiner, E.A., Ding, L., Sutherland, T.M., Zhu, Y., et al.: CAPE: Contin-
uous Query Engine with Heterogeneous-Grained Adaptivity. In: VLDB (2004)

14. Yao, Y., Gehrke, J.: Query Processing in Sensor Networks. In: CIDR (2003)

Load Shedding in MavStream: Analysis,
Implementation, and Evaluation�

Balakumar Kendai and Sharma Chakravarthy

IT Laboratory and Department of Computer Science & Engineering,
The University of Texas at Arlington, Arlington, TX 76019

sharma@cse.uta.edu

Abstract. In data stream management systems (DSMSs), Quality of Service (or
QoS) requirements, as specified by users, are extremely important. To satisfy QoS
requirements throughout the life of a data stream, result characteristics need to
be monitored at runtime and adjustments made continuously. It has been shown
that in a DSMS, switching scheduling strategies at runtime can change tuple la-
tency requirements. DSMSs also experience significant fluctuations in input rates
(termed bursty inputs). In order to meet the QoS requirements in the presence of
bursty inputs, a load shedding strategy is critical. This also entails monitoring of
QoS measures at run-time to meet expected QoS requirements.

This paper addresses load shedding issues for MavStream, a DSMS being
developed at UT Arlington. To cope with situations where the arrival rates of
input streams exceed the processing capacity of the system, we have incorporated
load shedders into the query processing model. The runtime optimizer continually
monitors the output and decides when to turn on the shedders and how much to
shed. Choice of shedders is done to minimize the error in the output. Shedders
have been incorporated as part of the buffers to minimize the overhead for load
shedding. Finally, load shedders are activated and deactivated dynamically by
the runtime optimizer. Both random and semantic load shedding techniques are
supported to match application semantics.

1 Introduction

The wide-scale deployment of pervasive devices (sensors, RFID’s, and hand held de-
vices) have created sources that produce data continuously at unreliable and unpre-
dictable rates. Furthermore, the size of this data is unbounded and can be considered as
a relation with infinite tuples (not stored on a secondary device as in DBMSs). These
data sequences coming in continuously are called data streams [1, 2, 3] Examples of
applications [1] that have streaming input are network monitoring, stock tickers and
variable tolling in highways.

Many stream based applications require real-time (or near real-time) results to be
useful and this is measured in terms of tuple latency – the amount of time (on the aver-
age) it takes for a system to from input to output. This and other requirements (memory
usage and throughput) are collectively known as Quality of Service (QoS), necessitate

� The work done in this paper is currently supported by NSF IIS - 0534611, NSF IIS - 0326505
and NSF EIA - 0216500.

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 100–112, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Load Shedding in MavStream: Analysis, Implementation, and Evaluation 101

that the data be processed on the fly as they arrive. The large amount of time required
for secondary storage access and lack of QoS support in DBMSs rule out the possibility
of storing the data in secondary storages and processing them. Though main memory
databases process data without storing them on secondary storage, they assume the data
to be readily available which is not the case with data streams. These characteristics of
data streams have necessitated the development of specialized applications for handling
them and are termed Data Stream Management Systems [1, 3].

As the data rate of a stream is unpredictable, operators may not always have the
data to perform computation when scheduled. There can also be periods where data
arrives at a very high rate. This necessitates buffering [4] as there may not be enough
capacity in a DSMS to process all incoming data without buffering. Since main memory
is always limited in a system, there is a possibility of memory overflow. Research in this
field has proposed techniques such as storing excess tuples into secondary storage [1]
and scheduling strategies [5]aimed at reducing the amount of tuples that reside in the
memory. Mechanisms have also been developed to reduce the memory requirement of
join and aggregate operators which operate on windows by using histograms, timeout,
slack, and discarding tuples to reduce window sizes [6].

The utility of results produced by a DSMS often depends on the delay with which it
is produced. This requirement is generally specified as QoS requirements for a query.
The three QoS measures that are mainly used in a DSMS are: tuple latency, memory
utilization and throughput. Tuple latency is specified as the difference in arrival and
departure time of a tuple in the system. Memory utilization is the total memory usage
of the tuples that reside in the queues of operators. This generally does not include the
tuples stored in the internal queues (synopsis) of window-based operators. Throughput
is defined as the rate at which output is produced by the system. Various scheduling
strategies have been proposed to improve the performance of a particular QoS measure
given the unpredictable nature of data. Also load shedding [2, 7] and other approxima-
tion techniques have been proposed to deal with situations when the system is unable
to meet the QoS requirements. An additional complication is that a continuous query
issued to a DSMS may have multiple QoS constraints associated with it.

Any DSMS is ultimately limited by the physical resources available to the system.
There may arise situations where the system may not be able to meet the QoS require-
ments because of periods of extremely high arrival rates. As many of the stream-based
applications can tolerate approximate answers, tuples can be dropped from the system
in order to meet the QoS requirements. This process of gracefully dropping tuples from
the system is known as load shedding. Load shedding [2, 7, 8] is a well researched
problem and various groups have proposed different mechanisms. In this paper, we
have proposed a load shedding mechanism that incurs the minimal overhead among
all proposed load shedding mechanisms. This is achieved by making load shedding a
function of the input queues of operators. The load shedding strategy proposed in this
paper is a feedback based approach, where QoS measures are monitored and tuples are
dropped either randomly or based on the semantics specified as part of the continu-
ous query. The proposed mechanism also activates load shedders at specific locations
which maximizes the gain in processing time while minimizing the error it introduces.
The load shedding component has been implemented as part of the runtime optimizer.

102 B. Kendai and S. Chakravarthy

The runtime optimizer monitors QoS measures for each continuous query in the system
and chooses an appropriate scheduling strategy, and beyond that load shedding to meet
QoS requirements. Our approach also tries to ensure that none of the QoS measures
that are currently satisfied do not get violated by switching to a new strategy. Moreover
the runtime optimizer also tries to minimize the number of switches between strategies
based on heuristics.

2 Related Work

In this section we present some of the work that has been carried out on load shedding
in data stream processing systems.

Stream: Stream [2] is a prototype implementation of a DSMS developed at Stanford.
Load shedding techniques [2] proposed in Stream focus only on aggregation queries
over sliding windows. The algorithm for load shedding tries to determine the most ef-
fective sampling rate for each query so that the error is distributed uniformly among
all queries and optimal location of load shedder that increases the throughput without
violating the load equation. For JOIN operations, a memory usage reduction [9] method
has been introduced using maximum subset and sampling techniques, for a novel age-
based model and frequency-based model. Two algorithms B-Int and L-Int have been
developed for sharing resources among aggregate sliding window operators. These al-
gorithms assume that a stream can be split into sub streams which is used to compute
multiple aggregates. B-Int algorithm pre-computes aggregates for intervals such that
any interval can be expressed as union of base intervals.

Aurora: Aurora [1] is a data flow system that uses a primitive box and arrow represen-
tation of queries. Tuples flow from source to destination through the operational boxes.
It can support continuous queries, ad-hoc queries and views at the same time. The QoS
evaluator in Aurora continually monitors system performance and activates the load
shedder, which sheds load until the performance of the system matches user-specified
values. It is specified in terms of a two-dimensional graph that specifies the output in
terms of several performance-related and quality-related services. It is the QoS that de-
termines how resources are allocated to the processing elements along the path of query
operation.

Aurora handles high load situations by dropping load using a drop operator. Load
shedding [7] is treated as an optimization problem and consists of determining when
and where to shed load and how much to shed. The QoS requirements are specified as
value utility graphs and loss tolerance graphs. The load shedding algorithm consists of
a load evaluation step where system load is determined using load coefficients. Load
coefficient, which is statically computed, represents the number of processor cycles
required to push a single input tuple through the network to the outputs. The next step
creates a load shedding road map which consists of an ordered sequence of entries. Each
entry in the road map has a drop insertion plan which guarantees that number of cycles
saved is maximized without sacrificing the utility of the result. At times of overload, the
road map is searched for the right amount of cycle savings to find a drop insertion plan.
The load shedding mechanism proposed in Aurora uses static information for deciding

Load Shedding in MavStream: Analysis, Implementation, and Evaluation 103

Fig. 1. MavStream Architecture

dropping strategies. The dropping mechanism proposed in Aurora is independent of
the scheduling mechanism. However, it makes the assumption that cycles gained by
dropping tuples will utilized by scheduler effectively.

In addition to the above, there are several systems that address stream processing
(such as Telegraph [10], TinyDB [11]) but they do not address load shedding explicitly.

3 MavStream Architecture

MavStream is a DSMS being developed at UTA for processing continuous queries over
data streams. MavStream is modeled as a client-server architecture. The various com-
ponents of MavStream are shown in Fig. 1. The MavStream server, upon receiving a
query from the client, transforms the input to create the query plan object. A query plan
object is a tree of objects that contain information about the operators of a query. The
input processor uses the instantiator module to instantiate all the operators, paths and
segments [12]. The instantiated objects are put in to the appropriate ready queue based
on the chosen scheduling strategy. The operators are scheduled using a scheduling strat-
egy and output of the query is given back to the client. The following sections provide
a brief overview of some of the modules in the MavStream system:

3.1 MavStream Server

MavStream server is a TCP Server which provides integration and interaction of various
modules such as input processor, instantiator, operators, buffer manager and scheduler
for efficiently producing correct output.

3.2 Input Processor

The input processor processes text input to generate a query plan object. This module
extracts the information of operators and query tree from the input. The query plan
object is a sequence of operator nodes where every node describes an operator com-
pletely. The operator hierarchy defines the direction of data flow starting from leaves

104 B. Kendai and S. Chakravarthy

to the root. On visiting each node, input processor calls the instantiator module to in-
stantiate the operators. The query tree is traversed in a bottom-up manner to ensure that
required child operators are instantiated prior to parent operators. It also computes the
processing capacity of paths and memory release capacity of segments (a subpath of an
operator path) and sorts them based on their respective capacities.

3.3 Scheduler

The scheduler is one of the critical components in MavStream. In MavStream, schedul-
ing is done at the operator level and not at the tuple level. It is not desirable to schedule
at a tuple level as the number of tuples entering the system is very large (unbounded).
On the other hand, scheduling at the query level loses flexibility of scheduling, as the
granularity offered by the scheduler may not be acceptable. MavStream schedules op-
erators based on their state and priority. The scheduler maintains a ready queue, which
decides the order in which operators are scheduled. This queue is initially populated
by the server. The operators must be in a ready state in order to get scheduled. Several
scheduling policies [12]– round-robin (RR), weighted RR, path capacity strategy (PCS),
segment scheduling (SS), and simplified segment scheduling (SSS) – are supported by
MavStream. The execution of all schedulers is controlled by the master scheduler. The
master scheduler allocates a time quantum to each scheduler to execute. At any instance
of time only one scheduler is allowed to run by the master scheduler.

3.4 Operators and Buffer

The operators of DSMSs are designed to handle long running queries producing results
continuously and incrementally. Blocking operators (an operator that cannot produce
output unless all the input is present) like Aggregates and Join may block forever on
their input as streams are potentially unbounded. Stream operators are executed using
the window concept so as to overcome the blocking nature of operators. MavStream
supports the following operators - split, select, project , join (hash and nested versions),
group by and various aggregate operators (sum, average, max, min, count).

The objective of buffer management is to provide a mechanism to handle the mis-
match between input rates and the processing capacity by using available memory. But
when we have limited main memory, there is an upper limit on the number of tuples
that can be stored in the main memory. If tuples exceed this limit, they have to be ei-
ther discarded or stored in secondary storage. The option of storing excess tuples onto
a disk is a hindrance for meeting QoS requirements such as throughput and latency.
Load shedding functions have been incorporated into the buffer to deal with situations
of high load. The load shedders are controlled (activated and deactivated) entirely by
the runtime optimizer without involving the operators.

4 Design of the Load Shedder

The resources available to any DSMS are limited. It is possible that the arrival rate of
input streams can exceed far beyond the processing capabilities of the system. These
situations lead to the system being overwhelmed with a large number of tuples, increas-
ing tuple latency and memory utilization. As some of the stream processing applications

Load Shedding in MavStream: Analysis, Implementation, and Evaluation 105

can tolerate approximate answer but not delay in results, dropping some tuples can pro-
vide better results for QoS measures. This process, known as Load shedding, is formally
defined as the process of gracefully discarding unprocessed or partially processed tuples
improving the QoS constraints of continuous queries. If a sufficient number of tuples
are discarded, the processing capacity will match the load and satisfy QoS measures.
Due to dropping of tuples, errors may be introduced in the output values. Load shed-
ding is an optimization problem and consists of the following subproblems: (i) When
and How much to shed load, (ii) Where to shed, and (iii) How to shed.

Load shedding is a trade off between tuple latency and accuracy and various tech-
niques for load shedding have been proposed. In this paper we have proposed a feedback
based load shedding approach that adds the least overhead to the system. The predefined
QoS requirements considered also include the most-tolerable relative error (MTRE) of
a continuous query in its final query results.

4.1 Location of Shedders

Most of the current load shedding mechanisms have proposed special purpose operators
[2, 7] to drop load. This requires the insertion of new operators in to a query plan when
the system is loaded. In addition to being a special operator, load shedding can be either
part of the operator or the queues. Among the possible options – as a special operator,
function of an operator, and as part of the queue/buffer, the option of adding a load
shedder using a special operator incurs the highest overhead as it needs to be inserted
into a query plan and requires scheduling. Also, the load shedding operator has an input
queue which buffers tuples before the operator decides to drop a tuple or not. The option
of adding load shedding as a function of an operator costs less than the first option as
the load shedder need not be scheduled separately. But it still buffers tuples that are
likely to dropped. This makes the last option of adding load shedders as part of the
queues most viable. By making load shedding a function of input queues, decision to
drop tuples is made when a tuple is enqueued thereby reducing latency. In addition to
saving CPU cycles this option reduces the memory requirement as well by dropping
tuples as early as possible.

4.2 The Runtime Optimizer

The runtime optimizer determines the measures violated by comparing monitored val-
ues to expected values. If the runtime optimizer does not find better strategies to meet
QoS it can invoke the load shedders (already built into the buffers and are inactive by
default) to save computational time. Load can continue to be shed as long as the error
introduced is within the tolerable limits specified by MTRE. As soon as QoS measures
start meeting the expected values, load shedding can be deactivated. The use of feed-
back from the system monitor provides a reliable metric on the actual performance of a
query in the system . Hence, this feedback can be used to control the operation of load
shedders without adding any overhead.

The load shedding approach proposed in [13] is used in this implementation. Briefly,
it estimates the load of the system based on the current arrival rates and tries to prevent
an overloaded state from occurring. Since these techniques require the estimation of
system load which is based on the system characteristics, they may not be accurate.

106 B. Kendai and S. Chakravarthy

Since load shedding mechanisms work to achieve the QoS requirements of a query the
feedback on their performance can be used to determine whether to shed load or not.

4.3 Where to Shed

Load shedders are incorporated into the buffers to minimize the overhead. As each
active load shedder needs some CPU cycles to decide whether to keep or drop a tuple,
it adds some overhead to the system. To reduce this overhead, the number of active load
shedders should be minimized. Towards this goal, for each operator path (a path from
leaf to root for a query plan), we activate at most one load shedder in its path. This
requires finding an optimal position for the load shedder. We use the concept of place
weight of shedders developed in [13] which is some what similar to the loss/gain [7]
ratio used in Aurora.

The placement of load shedders has a significant impact on the accuracy of the final
results, and on the amount of time (or computation units) it releases. Placing a load
shedder earlier in the query plan is most effective in saving computational time units
but its effect on the accuracy is most pronounced. On the other hand, placing a load
shedder after the operator which has biggest output rate in the query plan has the lowest
impact on accuracy when a tuple is dropped, but the amount of computation time units
released and the storage saved may not be the largest. Therefore, the best candidate
location for a load shedder along an operator path is the place where the shedder is
capable of releasing maximal computational time (and possible storage) units while
introducing minimal relative errors in final query results by dropping one tuple. The
formula for calculating place weight described in [13] is reproduced below 4.3.

Calculation of Place Weight. In a simple operator path X with k operators there are k
locations to place a load shedder. Let x1, x2, . . . , xk be its path label string, and v be the
input rate of the data stream for this operator path. Let b1, b2, · · · , bk be its k candidate
places, where bi, 1 ≤ i ≤ k is the place right before the operator xi. The place weight
W of a candidate place is the ratio of the amount of saved percentage of computation
time units α to the relative error ε in its final results introduced by a load shedder at that
place by discarding one tuple. The place weight W of a shedder at a particular location
of an operator path with its Most Tolerable Relative Error (MTRE = Ei) is defined as:

W =
α

ε
(1)

α = v(d)
CS − vshedder

CO
shedder

ε =

{ v(d)
vshedder

for a random shedder;

f
(

v(d)
vshedder

)
for a semantic shedder;

v(d) =
{

Ei ∗ vshedder for a random shedder;

Ei ∗ f(1
vshedder

) for a semantic shedder;

vshedder = v
∏xn

i=x1
(σi), x1 to xnare operators before the shedder

where CS is the processing capacity of the segment starting from the operator right after
the load shedder until the root node (excluding the root node) along the operator path.

Load Shedding in MavStream: Analysis, Implementation, and Evaluation 107

If there is no operator after the shedder, CS is defined as infinity and (v(d)
CS = 0). The

computational units that can be saved is therefore zero and the shedder itself introduces
extra overhead by vshedder

CO
shedder

. v(d) is the maximal drop rate at which shedder can drop tu-

ples at this location without violating the MTRE Ei defined for that operator path. v(d)
CS

is the total computation time units it saves by dropping tuples at a rate of v(d). How-
ever, a shedder also introduces additional overhead, which is vshedder

CO
shedder

, to the system as

it needs to determine whether a tuple should be dropped or not. vshedder is the input rate
of the load shedder, and x1 to xn are the operators before the load shedder starting from
leaf operator, and σi is the selectivity of the operator xi. If an operator is a leaf node,
then vshedder = v and v is the input rate of the stream for the operator path X . CO

shedder

is the processing capacity of the load shedder. If the load shedder is a semantic one, f(.)
is a function from selectivity of the shedder to the relative error in final query results.

In equation (1), the input rate of stream is the only parameter that changes over
time. All other items do not change until we revise the query plan. We compute the
place weight for each of the k candidate places. The partial order of load shedders in a
path do not change with the input rate as all of them have the same input at any time
instant. Hence, the place where the load shedder has the biggest place weight is the most
effective one. The arrival rates of input streams can be monitored and the mean rate of
arrival can be used for calculating place weight. The processing capacity of operators
and shedders can be determined by collecting statistics for the system. The processing
capacities can be determined from the average service time required to process a single
tuple. The drop rate is assumed to be the maximum that is allowed without violating
MTRE. This can be determined by using mean arrival rate and selectivity of operators
as mentioned in the above equation (1).

4.4 How to Shed Load

The location of shedders are determined before the query starts executing. Since the
number of active shedders has to be kept to a minimum to minimize the overhead, we
have to ensure that maximum savings are achieved by activating any shedder. Hence,
the shedders are initialized at positions having the highest place weight. We can obtain
the maximum gains by activating the shedders with the highest place weight. Therefore
when the runtime optimizer detects that queries are likely to violate QoS requirements,
it takes a greedy approach and activates the shedder with the highest place weight in the
list of non active shedders.

To achieve highest gains, the list of load shedders are kept sorted by their place
weights. The list is kept sorted when location of shedders are determined and hence
does not involve any overhead. When activated, the load shedder starts dropping tuples
at the maximum allowed drop rate. The runtime optimizer keeps the load shedder active
until either the QoS requirements are met or when it finds a better strategy for the query
after dropping some tuples. The load shedders are deactivated when a new strategy is
found so that the results produced by the query is closer to the actual. Furthermore, the
availability of a new strategy can denote potential availability of resources to meet QoS
requirements without dropping load.

108 B. Kendai and S. Chakravarthy

5 Implementation

The load shedders are implemented as part of the input queues of operators as they
incur the least overhead and drop tuples earliest. Load shedding is implemented as a
function in the Buffer class. The initial approach was to create a load shedder object
and to place it inside the Buffer object when it needs to be activated. As this involves
the overhead of creating an object and then performing the checks for drop, the simpler
approach of making load shedding a function of the buffer was taken. The state of
shedders is inactive initially in all the buffers. The state of the load shedder is checked
when every tuple is enqueued. If the shedder is inactive tuples are enqueued into the
buffer, else the functions to determine whether a tuple has to be dropped are called.
The QoSData object maintains a list of buffers where load shedders have the highest
place weight. When QoS requirements begin to get violated, the Decision Maker starts
activating load shedders using activateShedder in QoSData object . The activation of
shedders only involve setting the state of load shedders inside the input queues to true.
Once activated every tuple enqueued into the buffer is subject to additional checks for
determining whether it needs to be dropped using the checkDropCondition function.
This function determines the type of load shedder and calls the appropriate function.

5.1 Random Load Shedder

The random load shedder drops tuples at random based on a set probability. The run-
time optimizer has the option of setting the drop probability, with an upper limit that
is determined by maximum probability. The maximum drop probability is computed
while the location of load shedders is computed using the arrival rates and maximum
tolerant relative error. The maximum drop probability specifies the highest probability
at which tuples can be dropped without violating the tolerable error limits. This value
is set by the Input Processor module using initializeRandomLoadShedder function. On
activation of random load shedder, checkRandomDropCondition is called. A random
value is generated for each tuple enqueued. If the value generated is greater than the
drop probability of the shedder tuple is enqueued else it is dropped.

5.2 Semantic Load Shedder

Semantic load shedders drop tuples based on the semantics specified along with query
and work similar to select operators . The Input Processor performs the additional check
of adding a buffer to the list of load shedder only if the input stream of that path contains
the attribute that will be used for load shedding. Once the semantic shedder is initialized
by the Input Processor using initializeSemanticLoadShedder function , the monitorSe-
manticShedderRange function is called every time a tuple is enqueued into the buffer.
This function keeps track of the highest and lowest values for the attribute specified. On
activation by the runtime optimizer, the semantic shedder uses the values seen so far and
uses them to drop the tuples based on the range specified. For example, the center first
shedder will drop all the tuples that fall with in a fixed percentage around the mean.
The percentage of tuples to be dropped around the range of interest can be specified
optionally. The checkSemanticDropCondition, checkCondition functions of the Buffer
class performs the check for semantic shedder.

Load Shedding in MavStream: Analysis, Implementation, and Evaluation 109

6 Experimental Evaluations

To validate the implementation of load shedding effectiveness, experiments were per-
formed using the MavStream system described above. Below, we describe some of the
experiments and analyze the results obtained. MavStream is implemented in Java and
experiments were run using synthetically generated data streams.

Effect of Load Shedding on QoS Measures: These experiments were conducted to ob-
serve the effect of load shedding on QoS measures. The performance of QoS measures
without shedding was compared to the performance of QoS measures with various error
tolerance limits for shedding. The higher error tolerance limits translate to higher drop
probability for the random load shedders. This will lead to more tuples being dropped
from the system decreasing the tuple latency and memory utilization. The query used
for these experiments consisted of eight operators with two Hash Joins and three input
streams, each stream containing 2 Million tuples.

For the first experiment, a tuple based join of 1000 tuples/window was used. The
streams were fed using poisson distribution with a mean rate of 1000, 750 and 500
tuples/ second. The mean for the poisson distribution was doubled at different points
in time to simulate bursty nature of streams. The QoS measure considered was tuple
latency and a single value was specified with start and end values of 1 second. Mem-
ory utilization was set to ”Don’t Care” and hence did not affect the decisions made
by runtime optimizer. The error tolerance in the results of the query was varied from
10 to 30 percent. The decision table-based runtime optimizer chose PCS, the optimal
strategy for tuple latency. The runtime optimizer, after changing the scheduling strat-
egy of the query to PCS, determines that the latency is still being violated and hence
starts activating load shedders. As seen from the Fig.2, the higher the error tolerance
limit, the lower the tuple latency. This is as expected. As the load shedders are part of
the input queues of operators, tuples are dropped immediately and hence they provide
lower memory utilization which can be seen from Fig.3. In the figures LSn corresponds
to load shedding of n% of tuples.

Fig. 2. Effect of Load Shedding on Tuple Latency

110 B. Kendai and S. Chakravarthy

Fig. 3. Effect of Load Shedding on Memory Utilization

Percentage Error -Average

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181

Windows

E
rr

or
 P

er
ce

nt
ag

e

LS20
LS30
LS10

Fig. 4. Random Shedders: Error in Average

Effect of Load Shedding on Error in Results: This experiment was conducted to ob-
serve the error introduced by load shedders in the results. The query consisted of two
operators: select and an aggregate. The data set used was a modified version of Linear
Road Benchmark data set. The input rate of the stream followed a poisson distribution
with the mean set to 2000 tuples/sec. The mean was doubled at different points in time.
A time based window of 20 seconds was used for this experiment. The average speed of
cars was calculated for each window without shedding and with various error tolerance
levels for random load shedding. The error tolerance limits translate to the maximum al-
lowed drop probability for random shedders. The error introduced in the average speed
of car was much lower than the tolerant limits as indicated in Fig.4.

The same experiment was carried out for the three variants of semantic shedder. As
expected the semantic shedders introduce lower error as compared to that of random
load shedders. The center first shedder introduces a higher error as the values at cen-
ter affect the results most by dropping more tuples near the mean. The lowest and the
highest first shedder introduce very small errors as shown in Fig.5 and Fig.6. As the

Load Shedding in MavStream: Analysis, Implementation, and Evaluation 111

Percentage Error -Average

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181

Windows

Er
ro

r P
er

ce
nt

ag
e

Semantic Low

Semantic Center

Sematic High

Fig. 5. Semantic Shedders: Error in Average

Percentage Error - Sum

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181

Windows

Er
ro

r P
er

ce
nt

ag
e

Semantic low
Semantic Center
Sematic High

Fig. 6. Semantic Shedders: Error in Sum

query used in semantic shedders calculate the average and sum, the impact of highest
and lowest first shedders are minimal due to outliers in the data. The center first shed-
der drops tuples around the mean and therefore has the highest impact on the results.
As most of the tuples fall in the range of the mean more tuples are dropped. The re-
sults emphasize the importance of knowledge about the distribution of data while using
semantic shedders.

7 Conclusions

In this paper, we have described the implementation and evaluation of the load shedding
component of the MavStream system. The runtime optimizer not only monitors QoS
measures for load shedding purposes, it also dynamically changes scheduling strategies
to satisfy QoS requirements before load shedding is attempted. Currently, the system is
being integrated with complex event processing to provide an end-to-end solution for
monitoring applications.

112 B. Kendai and S. Chakravarthy

References

[1] Balakrishnan, H., Balazinska, M., Carney, D., Çetintemel, U., Cherniack, M., Convey, C.,
Galvez, E.F., Salz, J., Stonebraker, M., Tatbul, N., Tibbetts, R., Zdonik, S.B.: Retrospective
on aurora. VLDB J. 13(4), 370–383 (2004)

[2] Babcock, B., Datar, M., Motwani, R.: Load shedding for aggregation queries over data
streams. In: ICDE, pp. 350–361 (2004)

[3] Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong, W.,
Krishnamurthy, S., Madden, S., Reiss, F., Shah, M.A.: Telegraphcq: Continuous dataflow
processing. In: SIGMOD Conference, p. 668 (2003)

[4] Gilani, A., Sonune, S., Kendai, B., Chakravarthy, S.: The Anatomy of a Stream Process-
ing System. In: Bell, D.A., Hong, J. (eds.) BNCOD 2006. LNCS, vol. 4042, pp. 232–239.
Springer, Heidelberg (2006)

[5] Jiang, Q., Chakravarthy, S.: Scheduling strategies for processing continuous queries over
streams. In: Williams, H., MacKinnon, L.M. (eds.) BNCOD 2004. LNCS, vol. 3112, pp.
16–30. Springer, Heidelberg (2004)

[6] Arasu, A., Widom, J.: Resource sharing in continuous sliding-window aggregates. In:
VLDB, pp. 336–347 (2004)

[7] Tatbul, N., Çetintemel, U., Zdonik, S.B., Cherniack, M., Stonebraker, M.: Load shedding in
a data stream manager. In: VLDB, pp. 309–320 (2003)

[8] Jiang, Q., Chakravarthy, S.: Load shedding in a data stream management system. TR CSE-
2003, UT Arlington (November 2003)

[9] Srivastava, U., Widom, J.: Memory-limited execution of windowed stream joins. In: VLDB,
pp. 324–335 (2004)

[10] Shah, M.A., Chandrasekaran, S.: Fault-tolerant, Load-balancing Queries in Telegraph. In:
SIGMOD Conference, p. 611 (2001)

[11] Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: an acquisitional query
processing system for sensor networks. ACM TODS 30(1), 122–173 (2005)

[12] Chakravarthy, S., Pajjuri, V.: Scheduling strategies and their evaluation in a data stream
management system. In: Bell, D.A., Hong, J. (eds.) BNCOD 2006. LNCS, vol. 4042, pp.
220–231. Springer, Heidelberg (2006)

[13] Qingchun, J.: A framework for supporting quality of service requirements in a data stream
management system. Ph.D. dissertation, University of Texas at Arlington, Arlington (2005)

Event-Driven Database Information Sharing

Luis Vargas, Jean Bacon, and Ken Moody

University of Cambridge, Computer Laboratory
{firstname.lastname}@cl.cam.ac.uk

Abstract. Database systems have been designed to manage business
critical information and provide this information on request to connected
clients, a passive model. Increasingly, applications need to share informa-
tion actively with clients and/or external systems, so that they can react
to relevant information as soon as it becomes available. Event-driven ar-
chitecture (EDA) is a software architectural pattern that models these
requirements based on the production of, consumption of, and reaction
to events. Publish/subscribe provides a loosely-coupled communication
paradigm between the components of a system, through many-to-many,
push-based event delivery. In this paper, we describe our work integrat-
ing distributed content-based publish/subscribe functionality into a da-
tabase system. We have extended existing database technology with new
capabilities to realise EDA in a reliable, scalable, and secure manner. We
discuss the design, architecture, and implementation of PostgreSQL-PS,
a prototype built on the PostgreSQL open-source database system.

1 Introduction

Organisations invest in information technology to realise benefits through lower
business costs, better information and better communication. Through the years,
they have moved most of their critical data into databases, and automated many
business processes using a variety of applications. Database systems and appli-
cations have been deployed incrementally to satisfy the needs of some particular
area or domain of the business (e.g. a company branch). Domains are autonomous;
each administers its own resources independently of others. With the passage of
time, the number of databases, applications, and domains has multiplied. What
once were closely controlled environments have evolved into large-scale informa-
tion spaces that are both highly distributed and dynamic. Within such a domain-
structured environment, the active sharing of information has become vital for the
organisation’s success. This applies not only within a domain, but also between
different domains of the same organisation (and increasingly others).

To meet the need for active information sharing, domains often implement a
large set of targeted tools. Different types of information are captured at different
places (e.g. databases and applications), with different tools, each using its own
propagation mechanism, and implementing its own method of consumption at
the destination. Developers and database administrators must become proficient
in all these tools, and the system must be able to support them all at runtime.
Adding more applications to such an environment becomes a major ordeal.

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 113–125, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

114 L. Vargas, J. Bacon, and K. Moody

Databases are an obvious point to implement active information sharing, since
they maintain most of a business’s critical information and reflect its current
state. For example, an application may cause a change in a database, which can
signal an event that is of interest to other applications within the same domain,
or in other domains. Similarly, the receipt of an event by an application often
results in a change in database state within its domain to record the event persis-
tently. Such a style of interaction is best modelled by an event-driven architecture
(EDA) [1]. In EDA, all interactions between components in a distributed system
build on the production of, consumption of, and reaction to events. In parallel
with the emergence of EDA, publish/subscribe middleware [2] has been designed
and deployed, providing a popular communication paradigm for event-driven dis-
tributed systems. Publish/subscribe realises many-to-many, push-based delivery
of events between loosely-coupled components. In this paper, we describe our
work integrating distributed content-based publish/subscribe functionality into
a database system to realise EDA in a reliable, scalable, and secure manner.

We complete this Section with a motivating scenario. Section 2 sets up the
background in EDA, the publish/subscribe paradigm, and the PostgreSQL da-
tabase system [3]. Section 3 discusses the design of PostgreSQL-PS, a database
system enhanced with publish/subscribe functionality. The architecture of the
system is described in Section 4. Section 5 discusses how events are distributed
between multiple connected databases. The system’s programming interface is
presented in Section 6 and its implementation is discussed in Section 7. Section 8
outlines related work, and Section 9 concludes the paper.

1.1 Motivating Scenario

Consider a large-scale financial services firm. The firm has offices in different
cities across America and Europe, see Figure 1. Each office (domain) is autono-
mous, and maintains a database system that stores its critical data and a set
of applications, e.g. for automated trade processing. In such a scenario, most
interaction lies within a domain, but there is also a need for inter-domain com-
munication. For example, while some data feeds used to publish the latest stock

Fig. 1. A large-scale financial services firm

Event-Driven Database Information Sharing 115

prices are made available only locally, others are also sent to external offices.
Trading applications are specialised and thus expect different subsets of the
available data feeds, e.g. based on the stock symbol, price, risk level, or com-
binations. Besides general stock processing, many other processes continuously
keep track of specific situations, e.g. when a stock’s minimum price-earnings
ratio (PER) falls below a threshold. There will be a number of systems, both
within and outside the local office, that require to be notified of such events, e.g.
for real-time risk analysis.

Notice that information sharing in the scenario is inherently event based. To
remain competitive, the firm requires an event-driven infrastructure to integrate
the applications distributed across the various offices, and to support the active
sharing of information. We believe that such infrastructure can be built efficiently
on the database system. Firstly, database changes frequently trigger events. Sec-
ondly, for scalability, security, or simplicity purposes, business logic associated
with event processing is often moved to the database (as stored procedures or trig-
gers). Lastly, events must be logged in the database for reporting and audit.

2 Background

In this Section we establish the background on event-driven architecture (EDA),
the publish/subscribe paradigm, and the PostgreSQL database system.

2.1 Event-Driven Architecture (EDA) and Publish/Subscribe

EDA [1] is an architectural pattern built on the production, detection, consump-
tion of, and reaction to events. An event is defined as a happening of interest in
the system. Events are generated by event producers. Based on its characteris-
tics, an event is delivered to one or more event consumers. Consumers process
the event and optionally execute an action. The architecture is loosely-coupled
as producers and consumers do not require any knowledge about each other.

Publish/subscribe [2] is an asynchronous many-to-many event-based commu-
nication paradigm. In publish/subscribe, an event client may be an event pro-
ducer (publisher), an event consumer (subscriber), or both. Event producers
advertise the event types they will publish, and publish events, needing no knowl-
edge of the subscribers. An event consumer specifies a set of subscriptions on
events of interest. The event communication substrate, comprising one or more
event brokers, accepts events from publishers and notifies them to subscribers
whose subscriptions match. In a large-scale environment an event broker may
serve a subset of the clients in the environment, for example, being associated
with an administrative domain. Event brokers cooperatively distribute (route)
events, while attempting to exploit locality and contain system complexity. A
number of strategies for distributed event dissemination are discussed in [4].

Publish/subscribe comes in two flavours: topic-based and content-based. In
topic-based publish/subscribe, events are published under a topic and consumers
subscribe to that topic. In content-based publish/subscribe, event types are

116 L. Vargas, J. Bacon, and K. Moody

defined as comprising typed attributes. A subscription includes a filter expression
indicating attribute values of interest. Events with content that matches the filter
expression are delivered to the appropriate consumers.

2.2 PostgreSQL

PostgreSQL [3] is an open-source object-relational database system written in C.
Domain, referential, and transactional integrity, as well as multi-version concur-
rency control, are offered as some of its features. Active functionality is provided
in the form of triggers and active rules. Because its operation is catalogue-driven,
PostgreSQL can be extended, for example by adding new data types and func-
tions. Functions can be written in C, Python, or procedural SQL (PgSQL).

3 PostgreSQL-PS Design

In this section we discuss the design of PostgreSQL-PS, a database system en-
hanced by distributed content-based publish/subscribe functionality. We describe
the EDA aspects to be supported and establish requirements for the system.

3.1 EDA Aspects

The design of the PostgreSQL-PS system covers the four aspects of EDA: event
publication, subscription, consumption and distribution. The first three relate to
the role of the database system as a publish/subscribe event client. The fourth
delegates to the database system the role of event broker.

Event Production: to define events and specify conditions for their generation.

Event Subscription: to define an interest in receiving specific event instances.

Event Consumption: to define local actions to be executed when events match-
ing a subscription are notified.

Event Distribution: to receive events from external parties, e.g. applications
and other database systems. Events (either received or generated at the database
system) should be delivered to the relevant subscribers. Multiple interconnected
database systems should cooperate to route events between locally-connected
applications and applications connected to remote database systems.

3.2 Requirements

In the design of PostgreSQL-PS we have considered the following requirements:
expressiveness, reliability, scalability, access control and operational simplicity.

Expressiveness. The event model must support fine-grained subscriptions.

Reliability. The system must provide guarantees regarding its operation. We
focus on two aspects: transactional semantics and guaranteed event delivery.

Event-Driven Database Information Sharing 117

Transactional Semantics
Event production. We must ensure that events are produced only by committed
operations to avoid dirty reads by event consumers. We therefore need to defer
the publication of an event until its triggering transaction has committed. Fur-
ther, we must guarantee the production of events from committed transactions.

Event consumption. We must guarantee the ACID consumption of events. In
particular, the execution of event-processing actions must be transactional.

Guaranteed Event Delivery. In general, the delivery of an event must be
guaranteed despite failures between producer and consumer. Specifically, a con-
sumer must (eventually) receive each event exactly once. Events from the same
producer must be delivered to a consumer in the same order in which they were
published.

Scalability. System performance must degrade gracefully with the number of
clients, subscriptions, and events. For a single database system this requires
an efficient mechanism for matching events against subscriptions. For multiple
connected database systems, it also entails efficient event distribution.

Access Control. Each database system must be able to control which clients
can publish and subscribe to each event type.

Operational Simplicity. The database system must provide an integrated view
of database and publish/subscribe operations through a simple interface.

4 PostgreSQL-PS Architecture

In this Section we describe the different components of the PostgreSQL-PS sys-
tem architecture. All these components are defined in the context of a database.
Multiple databases, each having different instances of these components, can be
hosted within the same distributed database environment.

4.1 Event Types

Event types are used to structure the event space, each event being an instance
of an event type. An event type has a system-wide unique name [5] and a schema
that describes it. The schema is a set of attribute-name, data-type pairs. Valid
data types are the native types defined by the SQL92 specification [6] (e.g.
varchar, int, datetime). Event types are stored in the database system catalogue.
They are used to verify that a) an event instance conforms to its type schema, b)
a subscription filter refers to existing attributes, and c) functions and operators
in the filter are valid for the attribute types.

4.2 Events

An event is a set of attribute name/value pairs conforming to an event type
schema. In the database it is represented as a tuple structure. Events generated
at the database have two properties: visibility and reliability. The visibility of

118 L. Vargas, J. Bacon, and K. Moody

an event determines when the event is published with regard to the transaction
triggering the event. It can be either immediate or deferred. In the former, the
event is published as soon as it is generated. In the latter, the publication of the
event is deferred until its triggering transaction has committed. The reliability
of an event determines whether its delivery is non-guaranteed or guaranteed. In
the former, events are delivered at-most-once. In the latter, events are delivered
exactly-once, ordered with respect to each producer.

4.3 Subscriptions

A subscription expresses interest in consuming (a subset of) events of some
type. Subscriptions are named and specify an event type, an optional filter, and
a source. The filter is a SQL predicate over the event type’s attributes and,
possibly, stored data. A large number of built-in operators and functions can be
specified as part of the filter. The source of a subscription can be external or
internal. An external subscription is issued by a client application or received
from another database. An internal subscription is defined at the database to
process local events. Subscriptions have a local or global scope. A local subscrip-
tion only applies to events known to the local database. A global subscription
also expresses interest in events known to other databases (directly or indirectly)
connected to the database. Subscriptions are persistently stored in the database
system catalogue, in order to survive system failures and client disconnections.

4.4 Queues

Queues contain events. For each event type there are three queues: in, out, and
exception. Events locally produced or received from external parties are enqueued
in their corresponding in-queue. Events that have been matched against subscrip-
tions are enqueued in their out-queue for their delivery (external subscriptions)
or local processing (internal subscriptions). Events for which processing fails are
enqueued in their exception queue. Each in- and out- queue has two instances,
non-persistent and persistent. Non-persistent queues are volatile data structures
that hold non-guaranteed events in memory. Persistent queues use database stor-
age to store guaranteed events reliably on disk. They are implemented as special
tables with no INSERT, UPDATE, DELETE, or trigger statements. Events stored in
a queue can be consulted via SELECT queries on the event schema and additional
system information (e.g. enqueue time). Persistent queues can be non-auditable
or auditable. In the first (default) case, an event is deleted from a queue when it
is no longer required (e.g. it has been successfully delivered to a consumer). In
the second, the event is retained in the queue for auditing purposes.

4.5 Advertisements

Advertisements are either directly created at a database or introduced by a
local application. A database must advertise an event type before it can produce
or distribute events of that type. Advertisements are stored persistently in the
database system catalogue.

Event-Driven Database Information Sharing 119

4.6 Links

A link represents a connection to a remote database. It specifies contact infor-
mation and associated authentication data. On startup, a database connects to
all its defined links. Advertisements, global subscriptions, and events are prop-
agated through these links. A connected set of databases forms a distributed
system that actively shares information as described in the next Section.

5 PostgreSQL-PS Cooperative Event Distribution

In this Section we describe the mechanism used to distribute events cooperatively
between connected databases. In the current prototype, we consider a peer-to-
peer interconnection model in which databases communicate symmetrically in an
acyclic topology. In practice databases can be connected in any way, provided that
we identify a spanning tree for routing purposes. Factors to consider when con-
necting two databases include: administrative constraints, knowledge about the
locality of consumers (or producers) of events of interest, and network latency.

Events are cooperatively distributed using an advertisement-based filtering
scheme [7]. In this scheme, databases build event dissemination trees by propa-
gating advertisements and subscriptions as follows:

1. An advertisement for an event type is propagated by following every database
link. Each database stores advertisements received from the previous database.
This builds, for the event type, a dissemination tree from the advertising data-
base to every other database.
2. A subscription is propagated by reversing the links of databases with stored
advertisements for that type. Each database stores the subscription received from
the previous database. This builds, for the event type, a dissemination tree from
the subscribing database to every database that produces events of that type.

Events are distributed by following the links of databases with stored subscrip-
tions that match their type and content. After receiving an event, a database
evaluates 1) the set of internal subscriptions and external subscriptions issued
by local client applications, and 2) the external subscriptions received by linked
databases. If no subscription matches the event, it is discarded.

We illustrate event distribution in Figure 2. For clarity we consider a single
event type t. We show six connected databases DB1−6 and a set of applications
App1−6. App1 and DB2 produce events of t, and App3 and DB6 are event consumers.

First, App1 advertises t with a1, via its local database DB1. a1 is propagated to,
and stored by DB2−6. Then DB2 creates the advertisement a2 which is propagated
to, and stored by DB3, the only DB with a new source of events for t.

Next, DB6 creates the global subscription s6, which by reversing the paths of
a1 and a2, is propagated to, and stored by DB4, DB3, DB1, and DB2. On request of
App3, DB3 creates the global subscription s3, which is propagated to, and stored
by DB1 and DB2, extending the dissemination route for t. When DB1 receives the
event e1 from App1, it is propagated to App3 and DB6.

120 L. Vargas, J. Bacon, and K. Moody

Fig. 2. Cooperative Event Distribution

6 PostgreSQL-PS Programming Interface

PostgreSQL-PS provides two interfaces to programmers. A database program-
ming interface supports system administration and database-side event process-
ing. An application programming interface is available to client applications.

6.1 Database Programming Interface

This interface, see Table 1, extends SQL with a number of publish/subscribe re-
lated statements. It is accessible from the database system console (Psql), as
well as from client-level interface implementations such as JDBC.

An event type is created using the CREATE EVENT TYPE statement. This state-
ment also creates in, out, and exception queues for the event type. ALTER QUEUE
sets the auditable behaviour of a queue. An event type must be advertised be-
fore events of that type can be published or subscribed to. This is done using
ADVERTISE. Events are generated at the database using PUBLISH; the statement
is parametrised with the event visibility and reliability. PUBLISH can be used as
a separate statement or within a transaction. It can also be set as the action of
an active rule. This automates the production of events after data manipulation
commands, possibly referring to the transition tables NEW and OLD. A database

Table 1. Database Programming Interface

CREATE EVENT TYPE event type AS (att1 datatype, att2 datatype, ..)
ALTER QUEUE queue name SET [NON-AUDITABLE|AUDITABLE]
ADVERTISE event type

PUBLISH [IMMEDIATE|DEFERRED] [NON-GUARANTEED|GUARANTEED] event type

(attvalue1, attvalue2, ..)
CREATE RULE rule name AS ON {INSERT|UPDATE|DELETE} TO table

[WHERE filter] PUBLISH event type (attvalue1, attvalue2, ..)
CREATE [LOCAL|GLOBAL] SUBSCRIPTION sub name ON event type

[WHERE filter] EXECUTE func name (args) [WITH priority]
CREATE LINK link name TO address port USING user password

GRANT [PUBLISH|SUBSCRIBE] ON EVENT TYPE event type TO {user|role }

Event-Driven Database Information Sharing 121

subscribes to events of some type using CREATE SUBSCRIPTION; the statement
is parametrised with the subscription scope. As an optional filter, an SQL pred-
icate can be specified via a WHERE clause on attributes of the event type, as well
as on stored data. Subscriptions created at the database are always internal, and
must specify a function to process received events. Functions can be written in
any of the languages supported by the database, allowing developers to focus
on the most suitable for a given task (e.g. PgSQL for data-centric operations or
C for computationally intensive logic). The way in which a function is passed
an event depends on its implementation language, e.g. as a pointer to an Event
structure in C, or a top-level RECORD variable in PgSQL. An optional priority can
be assigned to the subscription, an absolute value that determines the order of
evaluation for subscriptions to a given event type. A link is defined using CREATE
LINK, which specifies the address and port on which a remote database services
publish/subscribe connections, and an authorised user and password in that da-
tabase. There are DROP statements for EVENT TYPE, RULE, SUBSCRIPTION, and
LINK, as well as an UNADVERTISE statement. Privileges on each of these state-
ments can be assigned and removed from database users and roles using GRANT
and REVOKE. Information about existing publish/subscribe-related objects (e.g.
event types, subscriptions, and links) is made available through restricted cata-
logue views.

6.2 Application Programming Interface (API)

This interface, depicted in Table 2, allows applications to access the database
system publish/subscribe functionality. We provide a Java implementation of
the API. In this, functions are supported via a Client object as described next.

An application connects to the database system using the Client connect
method. This requires the address and port where the database services pu-
blish/subscribe clients. A valid user and password are needed to authorise the
client, and to associate any stored subscriptions to the connection. Event types
are created by instantiating the EventType class. This class contains a name,
and a Map of two attributes: name and type. Valid types are String, Date, and
all subclasses of Number. The API translates these types to SQL92 data types
when an application requests the database to advertise an event type using
the advertise method. Events are created by instantiating the Event class.
This class has an associated event type and a Map of two attributes: name and
value. The value is an object of the corresponding attribute type. Events are
published, with the requested reliability, via publish. A subscription is issued,
with the specified scope, via subscribe. An optional filter can be defined via

Table 2. Application Programming Interface

Client.connect(address, port, user, password)
Client.advertise(EventType)
Client.publish(reliability, Event)
Client.subscribe(sub name, EventType, scope, filter, Callback)

122 L. Vargas, J. Bacon, and K. Moody

an SQL predicate. Finally, a class implementing the Callback interface must
be specified to process any events received. The API keeps a persistent Map of
subscriptions and callbacks. Events from the database are piggybacked with the
matched subscription name. Based on the SQL92 data types of attributes in
events received, the programming interface builds an Event Java object that is
passed to the callback class.

7 PostgreSQL-PS Implementation

We have implemented PostgreSQL-PS by extending the PostgreSQL [3] 8.0.3
code base. We chose PostgreSQL for its rich set of features and the ability to
analyze and extend its source code. We now describe the PostgreSQL-PS process
architecture and discuss how we fulfil the requirements established in Section 3.2.

7.1 Process Architecture

Figure 3 shows the PostgreSQL-PS process architecture. The various PostgreSQL
components that are reused are shown on the left.

Fig. 3. PostgreSQL-PS Process Architecture

As in PostgreSQL, a Postmaster listens on a well-known port and forks a
new database-serving process for each database client TCP connection. These
clients, usually Psql or JDBC-based, are served using synchronous request-reply.
The PostgreSQL parser was extended to provide clients with the database pu-
blish/subscribe programming interface. A process dedicated to publish/subscribe
handles TCP connections from publish/subscribe clients and remote databases.
The Postmaster forks this process on startup. Communication with publish/
subscribe clients is message-oriented and asynchronous, via non-blocking sockets.
We notify the publish/subscribe process of relevant operations (e.g. events and
subscriptions) issued from a database-serving process; for this we use a set of
control queues in a shared memory segment. Database-serving processes enqueue
notifications that are dequeued and analysed by the publish/subscribe process.

Event-Driven Database Information Sharing 123

7.2 Transactional Event Production and Consumption

We currently implement two event visibility and reliability combinations, im-
mediate non-guaranteed and deferred guaranteed, as we expect them to cover
most application scenarios. For the former, a published event is enqueued in its
non-persistent in-queue. There is no dependency between the transaction pro-
ducing the event and the publish operation. When the event is dequeued from
its in-queue, it is matched against subscriptions and immediately sent to its
consumers, via its non-persistent out-queue. For the latter, a publish operation
enqueues the event in its persistent in-queue. This is done within the running
transaction to ensure the atomicity of publish with other operations. If enqueuing
fails, the transaction rolls-back and the user is notified of the error. Otherwise
the event, together with the ID of its producing transaction, is stored in the
queue. When the transaction commits, a notification containing the transaction
ID is enqueued in a control queue. On-commit hooks [8] have been incorporated
for this purpose. When the publish/subscribe process dequeues the notification,
it matches events with the notified transaction ID against subscriptions. For each
matched consumer, one instance of the event is enqueued in the event’s persis-
tent out-queue for processing or delivery. Once matching is completed, the event
is removed from its persistent in-queue. The insertion of the event instances in
the out-queue and the removal of events from the in-queue are executed within
the same transaction.

On consumption, the dequeue of an event from its persistent out-queue and
the execution of its processing function take place within a transaction. The
execution of multiple functions for the same event is serial. Functions are exe-
cuted in turn, in separate transactions, according to subscription priority. This
ensures atomicity of function execution and isolation of execution for indepen-
dent functions. If processing an event fails (e.g. due to a violated constraint),
the event is removed from its out-queue and enqueued in its exception-queue
with a description of the error. These two operations are executed in a single
transaction.

7.3 Guaranteed Event Delivery

We ensure exactly-once ordered delivery of events between a sender and a re-
ceiver on a direct connection using an acknowledgement-based protocol with
unbounded sequence numbers [9]. At the application side, the protocol is han-
dled automatically by the API. Sender S keeps a sequence number s that is
incremented for each event e to be sent to receiver R. Before sending e[s], i.e.
event e with sequence number s, S persistently stores it with an associated
timestamp. We denote as S.e[s] the event e with sequence number s sent by S.
To enforce ordering, a receiver keeps an array N of sequence numbers, one for
each sender. N [S] denotes the sequence number associated with sender S. N is
stored persistently so it survives receiver failures. On receipt of an event S.e[n]:
if n < N [S], R acknowledges n to S and discards the event. If n = N [S], R
processes the event, increments N [S], and acknowledges n to S. If n > N [S], R
acknowledges N [S] to S and discards the event. The sender can delete e[s] when

124 L. Vargas, J. Bacon, and K. Moody

it receives an acknowledgement for s. If S does not receive an acknowledgement
for e[s] within a predefined timeout, it resends using an exponential backoff. In
this, the timeout starts at 4 seconds and doubles at each retry up to a maximum
of 64 seconds.

7.4 Scalability

Publish/Subscribe-related data indexing: At a database we need to quickly
retrieve 1) the event type schema used to validate an event, 2) the in, out, or
exception queue where an event must be stored, and 3) the set of subscriptions
to be evaluated against the event. Fetching this data from disk every time would
damage database performance. Therefore, we cache and index publish/subscribe-
related data in main memory. A hash table indexes event types by name: each
bucket stores the schema of the event type, its associated queues, and a pointer
to a dynamic array of subscriptions. Because of sequential locality, this structure
allows efficient iteration over the set of subscriptions for a given event type.

Execution Plan Caching for Subscription Filters: When the database
receives a subscription, its filter is parsed and translated into an execution plan.
When the subscription is evaluated, the database query engine needs only to
execute this plan. Parsing and planning is thus performed only once, instead of
at each evaluation. The performance gain is more significant if the subscription
filter refers to stored data, as planning of queries on tables takes more time.

Logical Event Deletes: An event in an in-queue is deleted after it has been
processed locally and matched against subscriptions. An event in an out-queue
is deleted after it has been acknowledged. In PostgreSQL a DELETE operation is
logical, i.e. it does not physically remove a tuple from disk. To reclaim the space
of deleted tuples, a separate VACUUM operation is used. This approach reduces
the time to delete an event from a queue, at a cost in disk space utilisation.
We expect that all queues in the database are vacuumed periodically (e.g. once
a day at a low-usage time), with more frequent vacuuming of heavily updated
queues.

8 Related Work

“Queues are databases” was stated more than ten years ago [10]. Accordingly,
some vendors have incorporated message queuing into their database systems.
SQL Server Service Broker [11] provides asynchronous and reliable dialogues
between databases to support distributed applications. Communication is bi-
directional between two databases; publish/subscribe is not supported. Oracle
Streams [12] supports one-to-many asynchronous replication via multi-consumer
queues. Replicas can specify content-based rules to propagate only a subset of
data changes from the master database. Rules are not global (they must specify
a source and a destination queue) so that a replica cannot express interest in
data beyond its master, unlike PostgreSQL-PS’s global subscriptions.

Event-Driven Database Information Sharing 125

9 Conclusions

Maintaining most of a business’s critical information and reflecting the state of
its daily processes, database systems are in a cardinal position to support active
information sharing. EDA provides an appropriate model for active data sharing
based on the production and consumption of events. Publish/subscribe is a suit-
able loosely-coupled communication paradigm. Integrating distributed content-
based publish/subscribe functionality into the database system is therefore a
promising approach to active information sharing. On one hand, databases al-
ready provide many features that an event-driven architecture can exploit, such
as persistent storage, transactions, and active rules. On the other hand, inte-
grating publish/subscribe into the database system leads to information-sharing
systems that are simpler to deploy and maintain. We are currently evaluating
PostgreSQL-PS against a decoupled database - publish/subscribe system. Pre-
liminary experimental results show that the execution of functions that require
to access the database frequently, e.g. logging events or evaluating subscriptions
that refer to tables, is faster in PostgreSQL-PS. However, the evaluation of sub-
scriptions that refer only to event content is, on average, slower, as the query
engine incurs an additional overhead. We are thus planning to incorporate an
event/subscriptions matching algorithm that pre-filters subscriptions based on
event content and employs the query engine only as needed.

References

1. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Professional, Reading (2002)

2. Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.: The Many Faces of Pub-
lish/Subscribe. ACM Computing Surveys 35(2), 114–131 (2003)

3. The PostgreSQL Global Development Group (2008), www.postgresql.org
4. Mühl, G., Fiege, L., Pietzuch, P.: Distributed Event-Based Systems. Springer, Hei-

delberg (2006)
5. Pesonen, L.I.W., Bacon, J.: Secure Event Types in Content-Based, Multi-domain

Publish/Subscribe Systems. In: Proc.of the 5th International Workshop on Soft-
ware Engineering and Middleware, pp. 98–105 (2005)

6. American National Standards Institute: Standard x3.135-1992 (1992)
7. Carzaniga, A., Rosenblum, D., Wolf, A.: Design and Evaluation of a Wide-Area

Event Notification Service. ACM Tran. on Computer Systems 19(3), 332–383
(2001)

8. Paton, N.W., Dı́az, O.: Active Database Systems. ACM Computing Surveys 31(1),
63–103 (1999)

9. Comer, D.E.: Internetworking with TCP/IP vol II. ANSI C Version: Design, Im-
plementation, and Internals. Prentice-Hall, Englewood Cliffs (1998)

10. Gray, J.: Queues are Databases. In: Proc. of the 7th High Performance Transaction
Processing Workshop (1995)

11. Aschenbrenner, K.: SQL Server 2005 Service Broker. Apress (2007)
12. Oracle: 11g Streams Replication Administrator’s Guide (2007)

www.postgresql.org

Smooth Interpolating Histograms

with Error Guarantees

Thomas Neumann1 and Sebastian Michel2

1 Max-Planck-Institut Informatik, Saarbrücken, Germany
neumann@mpi-inf.mpg.de

2 École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
sebastian.michel@epfl.ch

Abstract. Accurate selectivity estimations are essential for query opti-
mization decisions where they are typically derived from various kinds
of histograms which condense value distributions into compact represen-
tations. The estimation accuracy of existing approaches typically varies
across the domain, with some estimations being very accurate and some
quite inaccurate. This is in particular unfortunate when performing a
parametric search using these estimations, as the estimation artifacts can
dominate the search results. We propose the usage of linear splines to
construct histograms with known error guarantees across the whole con-
tinuous domain. These histograms are particularly well suited for using
the estimates in parameter optimization. We show by a comprehensive
performance evaluation using both synthetic and real world data that
our approach clearly outperforms existing techniques.

1 Introduction

Query optimization is largely based on selectivity (and thus cardinality) estima-
tions. Typically, these cardinalities are the most significant parameters of cost
estimations. The selectivity estimates are derived from precomputed statistical
information, usually in the form of histograms. A histogram contains a condensed
representation of the value distribution of one attribute (or multiple attributes
for multidimensional histograms). When a query contains a predicate on that
attribute, the corresponding histogram can be used for selectivity estimation.
For these estimations, the histograms are probed with values derived from the
query itself. These are only a few constants for most of the queries, but in some
situations the query optimizer itself will generate new constants.

As a showcase application for these kind of query optimization problems we
briefly discuss a typical issue in the area of top-k query processing. Among
the ample work on top-k query processing, the family of threshold algorithms
(cf, e.g., [1,2,3]) stands out as an extremely efficient and highly versatile method.
However, none of these algorithms can be directly applied in a widely distributed
setting, as they still incur an unbounded number of message rounds. In contrast,
state-of-the-art algorithms for distributed top-k aggregation use a fixed number
of communication rounds to bound latency. The first algorithm in this family

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 126–138, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Smooth Interpolating Histograms with Error Guarantees 127

was the TPUT (Three-Phase Uniform Threshold) algorithm [4], in which the
top-k query is translated into a range scan with appropriate postprocessing. Yu
et al [5] present a modification of TPUT where the range bounds are adapted to
the specifics of the value distributions. Along these lines stands our own work [6]
on distributed top-k query optimization. The basic idea behind the algorithms
presented in [4,5,7] is the transformation of a top-k query into the union of range
queries where the range is determined by an initial retrieval phase. In a simple
example of a top-k query that involves two index lists with a given range of
0.9, i.e., all documents with an aggregated score of at least 0.9 are potential
candiates, for summation the second retrieval phase can be written as

(select id from list1 where score≥0.5)
union all
(select id from list2 where score≥0.4)

Although this query requires some post processing, as it produces a super set
of the original top-k query, it can be executed more efficiently. As for normal
range queries, histograms can be used to estimate the number of qualifying data
items. Note however that the constants 0.5 and 0.4 in this query do not occur
in the original top-k query and that they were chosen somewhat arbitrarily. In
general any pair (a, b) of score thresholds would be suitable as long as a+b ≤ 0.9.
During query optimization, histograms are probed for many different (generated)
values that will often not occur in the actual data.

This has consequences for the requirements on histograms. The two main
requirements for constant optimization are:

1. Smooth estimations, i.e., the estimations do not create artificial extrema.
Formally, ∀[a,b]⊇[a′,b′]H([a, b]) ≥ H([a′, b′]), where H([., .]) is the estimator
for a range query.

2. Interpolating estimations, i.e., the estimation works well for any value in the
potential domain.

The smoothness requirement implies that numerical methods can be used on
the histogram. This is sometimes violated by more complex histograms (e.g., [8])
when modeling the CDF. As this is to some extent application specific, we do not
elaborate on this in the paper, although our histograms satisfy the requirement.
As we will see in Section 5, the interpolation requirement is not satisfied by
many existing approaches as they usually concentrate on creating histograms
to accurately represent the actual data while rarely occurring or non-occurring
attribute values cause large errors.

In this paper, we propose the usage of continuous linear splines to model data
distributions and present algorithms to efficiently construct interpolating splines
that have a low error guarantee across the whole domain, and that allow smooth
selectivity estimations. These spline histograms have some further nice properties
for top-k processing, in particular, they are reversible and allow for determining
the range bounds when the cardinality is known. Moreover, the spline histograms
are not limited to information retrieval settings, the experimental results show

128 T. Neumann and S. Michel

that they are superior to existing approaches even if the additional properties are
not required. The rest of this paper is organized as follows: Section 2 discusses
related work. Section 3 reasons about the usage of splines for interpolation.
Subsequently, Section 4 presents an optimal and a greedy algorithm to construct
spline histograms. Section 5 presents the experimental evaluation.

2 Related Work

Histograms are a well studied field in database research. In fact, there are so
many different kinds of histograms that we can only highlight closely related work
here, and refer to [9] for a comprehensive overview. In our work, we concentrate
on histograms that can be used for selectivity estimations of range queries. More
general histograms exist, for example for multidimensional data [10], but this is
beyond the scope of this work.

Spline based histograms have been mentioned in the literature before [11],
but there the knot placement problem is considered as too difficult. The paper
mentions that heuristic spline construction is possible, but the results shown in
[11] indicate that these heuristic splines are not relevant (the paper explicitly
classifies them as “poor histograms”). Another spline based histogram approach
has been proposed in [8], that in contrast to our work, disregards spline features
like smoothness and continuity. It partitions the value domain into buckets,
computes the frequencies inside each bucket, and fits a linear function to the
frequencies using least squares fitting. As we will see in Section 5, this bucket-
wise fitting can cause huge errors near the bucket boundaries.

A very well known histogram construction technique are V-Optimal histograms
[12]. The algorithm minimizes the frequency variance inside the buckets, which re-
sults in a good accuracy in general. It is not well suited for continuous data, where
the frequencies are usually all equal to 1 (see Section 5). Recently histogram ap-
proaches have been suggested that deviate further from the classical view of his-
tograms. Two examples are [13,14], that construct a wavelet representation of the
original data and then discards coefficients to reduce the space consumption. This
is very similar to lossy compression techniques. One difficulty is that the data has
to be discretized first, and that the accuracy is sensitive to the chosen approxima-
tion, as we will see in Section 5.

3 Spline Interpolation

The goal of histogram construction is to find a compressed representation of
the raw data that still allows for accurate estimations. We propose the usage of
splines; partially because they can represent distributions efficiently, and par-
tially because we can construct them in way that provides smooth estimations
with error guarantees. In this section we discuss the general approach of using
spline histograms, the concrete algorithms are shown in Section 4.

Smooth Interpolating Histograms with Error Guarantees 129

3.1 Data Representation

The raw data itself consists of a multiset of values, potentially from a continuous
domain. For query optimization, the histogram is typically queried in two differ-
ent ways. Either it should determine how many occurrences of an attribute that
have a certain value are in the data (point query) or how many occurrences of
an attribute are within a given range (range queries). We concentrate on range
queries here, as point queries on a continuous domain are not meaningful in
general since the expected number of occurrences is zero. On a discrete domain,
range queries can be used to approximate point queries.

The best representation for our purpose is the cumulative distribution func-
tion (CDF). For each point in the domain it gives the number of values less or
equal to this point, which can easily be used to answer range queries. Addition-
ally, it is reasonably easy to interpolate, as it grows monotonically and has a
contiguous support (in contrast to the density function). Note that for multisets
of values the CDF describes a step function. While the algorithms presented in
this paper could directly interpolate this, we simplify the representation by dis-
regarding the lower point of each step (i.e. connecting the upper points linearly).
Disregarding the lower points of each step reduces the number of data points
relevant for the interpolation, which speeds up the histogram construction, and
already constructs a linear spline. Thus the goal of spline construction in this
paper is to reduce a linear spline with n data points (n being the number of
values in the original data) to a linear spline with k data points (k being the
allowed histogram size) such that approximation is as good as possible.

3.2 Approximation Criterion

When approximating one function with another, it is necessary to define an ap-
proximation criterion to decide which approximation to choose. A commonly
used measure is the mean squared error, like, for instance, used in [8] during
the histogram construction. The mean squared error is very popular, but pri-
marily because analytic solutions for minimizing it are known, the value itself
is hard to interpret. Further, as only the average is minimized, the quality of
the approximation can vary arbitrarily over the domain. As we want a smooth
approximation, mean squared error is not a good choice.

A more robust error is the maximum error [13], which has a well defined
meaning even for continuous domains. If we construct an approximation func-
tion with a maximum error of ε, we know that this maximum deviation of ε is
guaranteed for all queries, regardless of the concrete value and without outliers.
Of course this error measure is only helpful if we can achieve a reasonably low
ε, we will see detailed algorithms for this in Section 4. For the spline interpola-
tion, a maximum error ε defines an error corridor around the original function
such that the resulting spline is guaranteed to stay within the error corridor. As
a consequence, the maximum error is known over the whole domain. A slight
variation of this is the maximum of the relative error, where the corridor size
is defined relative to the real value. As we will later see, our algorithms can handle

130 T. Neumann and S. Michel

both relative and absolute errors. In our experiments we used the maximum
relative error, as it is more critical in practice since.

3.3 Formalization

Using these observations, we can formalize the problem as follows: Given a linear
spline S and a line segment S1S2, we define the maximum error induced by this
line segment as the maximum deviation of knot points from the line segment.
This is

δ(S, S1S2) = max
p∈S∧p.x∈[S1.x,S2.x]

|p.y − S1S2[p.x]|

when using the absolute error, and

δ(S, S1S2) = max
p∈S∧p.x∈[S1.x,S2.x]

|p.y − S1S2[p.x]|
p.y

when using the relative error. Note that it is sufficient to calculate the difference
at the knot points, as the spline knots are connected linearly.

Using the maximum error induced by a single line segment, we can define
the maximum error for interpolating a linear spline S by a linear spline S′ as
maximum of all errors induced by the line segments of S′.

Δ(S, S′) = max
1≤i<|S′|

δ(S, S′[i]S′[i + 1])

Now the interpolation problem can be written as: Given a linear spline S and
a natural number k, k ≥ 2. Construct a linear spline S′ such that |S′| ≤ k,
S′[1] = S[1], S′[|S′|] = S[|S|] and Δ(S, S′) is minimal. Note that the require-
ment that the first and the last points of the splines must be identical prevents
approximating splines that only cover part of the original spline.

4 Spline Construction

The goal of the spline construction algorithms is to construct a spline with a
given size that approximates the cumulative frequency distribution with the
minimal (or at least a low) maximum error. By using the spline interpretation of
the original data as discussed in Section 3, the algorithms reduce a spline with
n points (the original data) to a spline with k points. The key difficulty here is
that n can be very large, potentially even larger than main memory, whereas k
is relatively small (e.g. for k = 100 the histograms consume 1.6KB). Note that
the spline representing the original data can be constructed trivially when the
values are sorted and is therefore not an issue. We now present two algorithms
for spline construction, first a greedy heuristic that can handle arbitrarily large
inputs and then a DP based algorithm that constructs the optimal spline. For
large inputs the two can be combined to produce good results, as we will see
below.

Smooth Interpolating Histograms with Error Guarantees 131

4.1 Greedy Construction

Minimizing the maximum error with a greedy algorithm is difficult, as the effect
of knot placement on later knots is hard to predict. Instead, we solve the dual
problem (constructing the smallest spline with a given maximum error), and
use its solution to solve the original approximation problem. The greedy spline
construction is therefore split into two parts. The first part (GreedySplineCor-
ridor) constructs a linear spline approximation for a given error corridor, and
the second part (GreedySpline) minimizes the size of the error corridor using the
first part.

The pseudo code of the spline construction with a given error corridor is shown
in Figure 1. It starts constructing the result spline R by choosing the first point
in S as first point of R. During the algorithm, the last point in R is called B
(base point). It then performs a linear scan over the spline and checks if the line
segment between B and the current point C is still within the error corridor.
If not, the maximum error constraint would be violated if connecting B and C,
i.e., δ(S, BC) > ε. The last point before C allows for interpolation within the
error boundaries, therefore it is chosen as new base point and added to R.

If a point is not chosen as a new base point, it still affects the error corridor.
An important observation is that it is not required to keep track of the real error
corridor, it is sufficient to remember the most limiting points. In the algorithm
these are U for the the upper bound and L for the lower bound, that denote
the most narrowing points of the error corridor relative to B. For each point
C, the individual upper and lower bounds U ′ and L′ are calculated by adding ε
to the y value (or for relative errors by multiplying y with 1 + ε and 1 − ε). If a
new bound is more restrictive, it replaces the old bound. An illustration of this

GreedySplineCorridor
Input: a spline S, |S| = n and an error corridor size ε
Output: a spline connecting S[1], S[n] through the corridor
B = S[1], R =< B > // S[1] is the first base point
U = S[2] + ε, L = S[2] − ε // error corridor bounds
for i = 3 to n

C = S[i]

if BC is left of BU or right of BL
B = S[i − 1], R = R◦ < B >
U = C + ε, L = C − ε

else
U ′ = C + ε, L′ = C − ε

if BU is left of BU ′

U = U ′

if BL is right of BL′

L = L′

R = R◦ < S[n] >
return R

C’

C

L

U

B

Fig. 1. Greedy Spline Approximation with a Given Error Corridor

132 T. Neumann and S. Michel

GreedySpline
Input: a spline S, |S| = n, and a desired spline size k
Output: a spline connecting S[1], S[n] with ≤ k knots
R = ∅, εR = ∞
εL = 0, εU =error when approximating S with 0
while εU − εL > Δ

ε = εL+εU
2

Sε =GreedySplineCorridor(S,ε)
if |Sε| > k

εL = ε
else

if ε < εR

R = Sε, εR = ε
εU = ε

return R

Fig. 2. Greedy Spline Approximation Algorithm

approach is included in Figure 1. The point B has been chosen as a base point
(i.e. the second point in the output spline), and now the scan continues to point
C. C is still reachable from B, thus it is skipped for now. The lower bound L
is updated to the new lower bound derived from C, whereas the previous upper
bound U is tighter than the bound derived from C and is thus unchanged. The
next scan point C′ is no longer reachable from B, therefore C will be added as
new base point when scanning to C′.

The scan continues until the last point of S is reachable within the error
corridor, after which it is added to R as the final point. The spline R now consists
of the smallest spline (regarding the greedy selection method) that satisfies the
maximum error ε across the domain. The whole algorithm performs a single scan
over the original data and requires only constant memory in addition to the result
itself. Thus, it has a runtime complexity of O(n) and a space complexity of O(k).

This spline construction logic can now be used to find splines with a low maxi-
mum error. The pseudo code is shown in Figure 2: It performs a binary search over
the maximum error until the desired accuracy is reached (which can be derived
from the data). For each error bound ε, GreedySplineCorridor is used to construct
a spline. If the spline is too large, the error bound has to be increased, otherwise it
can be decreased. After the binary search is done, the algorithm returns the best
spline found that consists of at most k points. In an implementation, the spline
construction can stop if the spline candidate gets larger than k points, therefore
the overall algorithm runs in O(n log n) time and O(k) space. The algorithm is
very fast, which makes it attractive as a pre-filter for slower algorithms (reducing
a huge n to a more manageable n′). Due to its sequential access pattern it could
even be used if the original spline does not fit into main memory.

4.2 Optimal Construction

Disregarding memory restrictions, there is no need to use an approximate solu-
tion, at least from a theoretical point of view. In his seminal work, Goodrich [15]

Smooth Interpolating Histograms with Error Guarantees 133

showed that the optimal linear spline can be constructed in O(n log n), i.e., with
the same asymptotic complexity as our greedy heuristic. Unfortunately these are
primarily theoretical results. Several steps of the algorithm are very involved,
and [15] already mentions that a potential implementation would have very large
constants. To our knowledge, no implementation of the algorithm exists.

Instead, we use a dynamic programming algorithm that constructs the spline
in O(n2k) time and O(nk) space. The resulting spline is optimal when solely
considering the original data points as potential spline knots, which is reasonable
here (as k � n), but not necessarily optimal in some cases [15]. We ignore this
possibility, as n is very large and offers enough potential knot points.

The pseudo code for the DP algorithm is shown in Figure 3. It constructs a
DP table that for each data point j (1 ≤ j ≤ n) and each value l (1 ≤ l ≤ k)
gives the minimum error (dpError) of reaching this point with a spline of size l,
and the previous point (dpPrevious) in the spline. The table is filled as follows:
For the first point S[1], the interpolation is perfect as we start with it, resulting
in an error of zero for all spline sizes. Then, the algorithm considers all potential
starting points of spline segments i and all potential ending points for each
segment j. For each of these segment candidates it computes the maximum error
εij caused by choosing a spline segment S[i]S[j]. Note that as the error corridor
for the greedy algorithm, εij can be maintained incrementally. If i = 1, i.e., the
spline segment starts with the first point, we can construct a spline of size 1,
setting dpError[j, 1] = εij . Otherwise, the spline must consist of at least one
other spline segment that reached i. The algorithm tries out all possible spline

DPSpline
Input: a spline S, |S| = n and a desired spline size k
Output: a spline connecting S[1], S[n] with ≤ k knots
dpPrevious = map ([1, n], [1, k]) → [1, n]
dpError = map ([1, n], [1, k]) → R

+

for l = 1 to k
dpError[1, l] = 0, dpPrevious[1, l] = 1

for i = 1 to n − 1
for j = i + 1 to n

εij = δ(S, S[i]S[j])
if i = 1

dpError[j, 1] = εij , dpPrevious[j, 1] = 1
for l = 2 to k

ε = max(εij , dpError[i, l − 1])
if i = 1 or ε < dpError[j, l]

dpError[j, l] = ε, dpPrevious[j, l] = i
R = <>, r = n
for l = k to 1

R =< S[r] > ◦R
r = dpPrevious[r, l]

return R

Fig. 3. Dynamic Programming Spline Construction Algorithm

134 T. Neumann and S. Michel

sizes l, using the maximum of εij and the error of the preceding, smaller spline
(dpError[i, l − 1]) as total error ε. If ε is smaller than the best known error for
this end point and this spline size, the error bounds are updated and the starting
point stored in dpPrevious. After all segments were considered, dpError[n, k]
contains the maximum error of the best spline, and dpPrevious[n, k] the previous
to last point of this spline. Walking backwards over dpPrevious, the algorithm
reconstructs the best spline R from the DP table.

4.3 Large Inputs

As the runtime complexity of the DP algorithm is O(n2k), it cannot be used
for arbitrarily large problems. Our implementation could solve n = 5, 000 and
k = 100 in less than two seconds on a standard PC, but the runtime increases
quadratically with n. And n can be very large in practice. We therefore use the
greedy algorithm as a reduction step. The greedy algorithm itself is very fast
even for large inputs (n = 1, 000, 000 in less than a second), and constructs
approximating splines with known maximum errors. Thus, when solving large
problems with the DP algorithm, we use the greedy algorithm to reduce the
input to a spline with 5, 000 knots and then use the DP algorithm on the reduced
spline. Due to the geometric interpretation of the error corridors, the errors of
the two algorithms at most add up, and the error for k = 5, 000 is very low. As
we will see in Section 5, this allows us to efficiently handle very large inputs,
while still maintaining hard error boundaries across the whole domain.

5 Experimental Results

In this section we study the prediction quality of our spline histograms in com-
parison with existing approaches. We first discuss the general setup, then we
present the particular approaches that we consider in our evaluation, and finally
we present the experimental results for real-world IR data.

5.1 General Setup

To evaluate the accuracy of the different approaches, we construct histograms of
varying size for each approach. As the approaches differ in the information stored
per bucket, we measure the size in bytes instead of buckets. For each histogram
size, we construct 1 million range queries of the form attr ≥ x, where x is varied
uniformly between the minimum and the maximum attribute value. For each
of these range queries, we compute the actual number of tuples in this range
and the prediction made by each histogram. The difference between the two, the
absolute error, is reduced by one to eliminate rounding issues (the predictions
are reals while the actual number of tuples is an integer) and then divided by the
actual number of tuples to get the relative error. We show three measures: the
maximum relative error over all queries, as this was our optimization criterion
and shows the worst case for each approach. The average relative error, as this
show the “expected” error for an arbitrary query. And the mean squared error,
as this is a standard measure in statistics.

Smooth Interpolating Histograms with Error Guarantees 135

Note that we (intentionally) use queries whose boundaries do not necessarily
correspond to values occurring in the data. This mimics our original motivation,
where the query compiler tries out potential constants, and in fact shows a major
problem: Most approaches perform significantly better when only using range
queries whose parameters occur in the data. Or in other words, most approaches
fail when using arbitrary constants as range boundaries. This is often caused
by a kind of overfitting, where the algorithms model the existing values very
well at the expense of the general approximation. We include results when only
considering existing values as comparison.

5.2 Considered Approaches

We compare our spline histograms with a number other approaches in the exper-
iments. Our spline histograms, as described in Section 4, and are called Greedy
Spline and DP Spline in the experiments. For the DP base spline construction, we
first reduce the input to a spline with 5000 knots using the greedy construction
and then run the DP algorithm to get the final spline. The Sampling strategy
derives its estimation from a sample of the original data [16]. The Koenig his-
tograms are described in [8], and construct a linear spline approximation within
each histogram bucket. Unfortunately, they are only defined for integer domains
in [8], and a generalization to real numbers is not straightforward (e.g., Formula
10 relies on the integer domain). As point queries are well defined even for real
numbers, we used a CFG representation for range queries. The V-Optimal his-
tograms described in [12] minimize the frequency variance in one bucket. This
causes problems with continuous data, as most frequencies are 1. We there-
fore discretize the input into 212 buckets. This number was derived empirically,
changing the exponent reduced the accuracy. We also considered Equi-Width and
Equi-Depth histograms, but omit the result here, as they are clearly dominated
by V-Optimal histograms. The Wavelet histograms are described in [14]. They
require a discrete domain, therefore we discretize the values into 210 buckets
(again, empirically determined). The Wavelet RelErr histograms described in
[13] use a different coefficient selection algorithm to minimize the relative error,
we therefore include them in our experiments.

5.3 Real Data

As a data set we use the GOV collection from the TREC-12 Web Track bench-
mark (http://trec.nist.gov/), which consists of roughly 1.25 million documents
crawled from the .gov domain. We compute the inverted lists for the terms oc-
curring in the Web Track’s topic distillation task, scoring each document with
normalized TF*IDF*PageRank scores (real values in [0, 1]). We show here the
results of the inverted list for term public, which is the largest inverted list (the
other terms show similar results). The inverted lists contains of 427, 940 entries
with 359, 505 distinct score values. The scores themselves are heavily skewed
towards low values, even though there are relatively few duplicates.

Figure 4 a shows the maximum relative error of the different approaches with
varying histogram size. As the maximum is sensitive to outliers, the maximum

136 T. Neumann and S. Michel

 0.1

 1

 10

 100

 1000

 10000

 100000

 500 1000 1500 2000 2500 3000

m
ax

im
um

 r
el

at
iv

e
er

ro
r

histogram size [bytes]

GOV data - term public

Splines DP
Splines Greedy

V-Optimal histograms
Wavelets

Wavelets RelErr
Sampling

Koenig histograms

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 500 1000 1500 2000 2500 3000

av
er

ag
e

re
la

tiv
e

er
ro

r

histogram size [bytes]

GOV data - term public

Splines DP
Splines Greedy

V-Optimal histograms
Wavelets

Wavelets RelErr
Sampling

Koenig histograms

a) maximum error b) average error

Fig. 4. Maximum and average relative error for the GOV term list public

error is quite high for most approaches. The spline histograms guarantee a max-
imum error of ≈ 13% for all queries. Interestingly even this number is a kind
of outlier, as it is caused by ignoring the steps in the distribution function in
our data model. A more forgiving error measure is the average relative error, as
this shows the expected error for an arbitrary query. The results are shown in
Figure 4 b. Again, the spline histograms perform very well, with an average error
of ≈ 0.3% for Greedy Splines. The DP Splines perform a bit better (≈ 0.2%),
but the overall performance is similar.

A very popular error measure in statistics is the mean squared error, which
we show in Figure 5 a. The interpretation of the absolute values is somewhat
difficult, as the impact on queries is unclear, but low values are most likely
good. Again, the spline histograms perform very well, only Koenig histograms
which explicitly minimize the mean squared error perform better. Note though
that Koenig histograms performed quite poorly for the more insightful relative
error. Some of approaches, in particular Koenig histograms, perform surprisingly
badly in the experiments seen so far. This is due to the fact that the query
boundaries are chosen from all over the domain, regardless of whether a data

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 500 1000 1500 2000 2500 3000

m
ea

n
sq

ua
re

d
er

ro
r

histogram size [bytes]

GOV data - term public

Splines DP
Splines Greedy

V-Optimal histograms
Wavelets

Wavelets RelErr
Sampling

Koenig histograms

max rel. avg rel. mean sq.

DP Spline 0.0096 0.0008 50,029
Greedy Spline 0.0040 0.0024 497,503
V-Optimal 0.4880 0.0034 162,246
Wavelet 0.8571 0.0244 5.4 ∗ 107

Wavelet RelErr 0.2762 0.1001 8.7 ∗ 108

Koenig 55.068 0.0005 435
Sampling 215,012 4.49839 1.1 ∗ 108

a) mean squared error b) querying for existing data points (3200 bytes)

Fig. 5. Mean squared error and querying for existing data for the GOV term list public

Smooth Interpolating Histograms with Error Guarantees 137

item with this exact value exists or not. If we instead chose all existing values as
query boundaries once, the results are much better (Figure 5 b), which suggests
overfitting to the data. Koenig histograms for example perform very well when
only queried for existing values, but perform quite poor overall. The DP strategy
has a slightly higher maximum error than the Greedy strategy. This is caused
by the pre-filtering steps, which removes data points from its input, causing an
underestimation of the maximum error.

5.4 Effect on Queries
While the accuracy results above compare histograms using different error met-
rics, we measure the effect on real queries in this section. We use the optimization
framework described in [6], as the experiments in the paper operate on the same
data set, using the official GOV benchmark queries. For the comparison, we op-
timize the queries using different cardinality estimators, execute them, and then
compare the resulting runtime and network traffic. Due to space constraints, we
only show the average results for the Spline histograms (Greedy and DP pro-
duced the same plans), V-Optimal histograms, and Wavelet RelErr histograms,
as these were by far the most accurate:

Splines V-Optimal Wavelet
runtime [ms] 585 649 618
net [bytes] 23,918 39,660 26,715

Here, even the relatively simple GOV queries can be improved just by using
splines instead of the other histograms. Note that using the WaveLet RelErr
histograms increased the optimization time to > 10 min and the memory con-
sumption to > 2.5GB, as the optimization framework constructs histograms
over intermediate result approximations and the wavelet construction is very
expensive. Optimization with the other histograms took < 20 ms.

In conclusion, our spline histograms offer smooth predictions for arbitrary
values, and guarantee a known maximum error over the whole domain.

References

1. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
J. Comput. Syst. Sci. 66(4), 614–656 (2003)

2. Güntzer, U., Balke, W.T., Kießling, W.: Optimizing multi-feature queries for image
databases. In: VLDB, pp. 419–428 (2000)

3. Nepal, S., Ramakrishna, M.V.: Query processing issues in image (multimedia)
databases. In: ICDE, pp. 22–29 (1999)

4. Cao, P., Wang, Z.: Efficient top-k query calculation in distributed networks. In:
PODC, pp. 206–215 (2004)

5. Yu, H., Li, H.G., Wu, P., Agrawal, D., Abbadi, A.E.: Efficient processing of dis-
tributed top-k queries. In: Andersen, K.V., Debenham, J., Wagner, R. (eds.) DEXA
2005. LNCS, vol. 3588, pp. 65–74. Springer, Heidelberg (2005)

6. Neumann, T., Michel, S.: Algebraic query optimization for distributed top-k
queries. In: BTW, pp. 324–343 (2007)

138 T. Neumann and S. Michel

7. Michel, S., Triantafillou, P., Weikum, G.: Klee: A framework for distributed top-k
query algorithms. In: VLDB, pp. 637–648 (2005)

8. König, A.C., Weikum, G.: Combining histograms and parametric curve fitting for
feedback-driven query result-size estimation. In: VLDB, pp. 423–434 (1999)

9. Ioannidis, Y.E.: The history of histograms (abridged). In: VLDB, pp. 19–30 (2003)
10. Deshpande, A., Garofalakis, M.N., Rastogi, R.: Independence is good: Dependency-

based histogram synopses for high-dimensional data. In: SIGMOD, pp. 199–210
(2001)

11. Poosala, V., Ioannidis, Y.E., Haas, P.J., Shekita, E.J.: Improved histograms for
selectivity estimation of range predicates. In: SIGMOD, pp. 294–305 (1996)

12. Jagadish, H.V., Koudas, N., Muthukrishnan, S., Poosala, V., Sevcik, K.C., Suel,
T.: Optimal histograms with quality guarantees. In: VLDB, pp. 275–286 (1998)

13. Garofalakis, M.N., Kumar, A.: Wavelet synopses for general error metrics. ACM
Trans. Database Syst. 30(4), 888–928 (2005)

14. Matias, Y., Vitter, J.S., Wang, M.: Wavelet-based histograms for selectivity esti-
mation. In: SIGMOD, pp. 448–459 (1998)

15. Goodrich, M.T.: Efficient piecewise-linear function approximation using the uni-
form metric. Discrete & Computational Geometry 14(4), 445–462 (1995)

16. Scott, D.W.: Multivariate Density Estimation: Theory, practice, and visualization.
Wiley, Chichester (1992)

Virtual Forced Splitting, Demotion and the

BV-Tree

Alan P. Sexton and Richard Swinbank

School of Computer Science, University of Birmingham
Edgbaston, Birmingham, B15 2TT, UK

{A.P.Sexton,R.J.Swinbank}@cs.bham.ac.uk

Abstract. In external multi-dimensional access methods, Forced Split-
ting is an approach used to ensure that, when a page splits, no sub-tree of
the page belongs under both halves, thereby guaranteeing that only one
path from the root need be searched to find any point in the tree. This
reduces occupancy of forcibly split pages, possibly down to single entries
in pathological cases. Freeston introduced a novel approach to obtaining
the benefits of forced splitting while avoiding the negative consequences
for a class of access methods he called BV-Trees. Perhaps because of
its rather abstract presentation and the lack of complete algorithm de-
scriptions, we believe that this idea has not achieved the recognition it
deserves. We present a different view of the BV-Tree concept in terms
of what we call Virtual Forced Splitting (VFS), show how the semantics
of a VFS tree can be understood by its relationship to a much simpler
Forced Split tree obtained by reduction from the VFS tree. This allows an
explanation of the complex issue of demotion; a requirement for correct
implementation that is acknowledged but not discussed in the literature
before now. We show how various multi-dimensional algorithms such as
k-Nearest Neighbour and Range Search can be effectively implemented
on such trees, and, finally, discuss our own implementation of a BV-Tree,
and report performance results in comparison to the R*-Tree.

1 Introduction

External hierarchical multidimensional access methods can be divided into those
that partition data into groups described by regions that may overlap, e.g. the
R-tree family [1,7], and those that partition the space directly, for example the
K-D-B tree [9] and the BANG-file [6]. The latter class has the property that
partition regions do not overlap, and therefore exact match search algorithms on
these structures do not need to backtrack. Providing this property, together with
other desirable properties of height balance and guaranteed minimum fanout, is a
research objective of long standing. The BV-tree [3] offers a promising approach
to meeting this objective, but one that has received little attention, partly, we
believe, because it is rather poorly understood.

In this paper we examine the BV-tree in the wider context of access methods
that employ what we call virtual forced splitting to achieve efficient representa-
tion on disk while providing the properties described above during processing. In

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 139–152, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

140 A.P. Sexton and R. Swinbank

section 2 we introduce the general concept of virtual forced splitting and describe
the BV-tree in this context, and in section 3 describe transformation between
on-disk and runtime representations of such structures that enables implemen-
tation of standard tree operations. Some experimental results from our BV-tree
implementation are given in section 4 followed by our conclusions in section 5.

2 Virtual Forced Splitting and the BV-Tree

2.1 Forced Splitting

The K-D-B tree [9] uses a kd -tree [2] based spatial decomposition to partition
points and regions of space, and as such does not permit overlap between par-
titions. This means that it is possible to decompose a space in such a way that
the subregions produced can not be split in a balanced ratio. The K-D-B tree
solution to this problem is to employ forced splitting: when splitting a node,
entries are allocated to one or the other of a pair of parent regions in the usual
way, but if a region is partially enclosed in both parents, it is split into two
regions, each of which is enclosed solely by one parent region. The effect of this
is to produce a well-balanced split locally, but, as the split plane must then be
enforced throughout the entire subtree of the affected entry, it leads to breaking
minimal occupancy guarantees in portions of the two resulting subtrees.

Other structures, for example variants of the BANG file [5], have used forced-
splitting for the same reason and with the same results. We refer to structures
using forced splitting as forced-split trees (FS-trees).

2.2 Virtual Forced Splitting and the VFS-Tree

The use of forced splits in FS-trees is a sacrifice made to achieve region disjoint-
ness. Given a query point and a collection of disjoint regions, a maximum of
one region may contain the point; a search tree describing only disjoint spatial
regions in each internal node therefore exhibits (at most) a single, deterministic
path from the root of the tree to a leaf node for any given point in the space. We
refer to this as the single path property, or SPP. Maintenance of the SPP in FS-
trees comes at a cost of possible disk page under-occupancy and, consequently,
low fanout, something that adversely affects tree search efficiency, but enables
exact match searching without backtracking.

We examine, as an alternative to forced-splitting, an idea first presented by
Freeston in the BV-tree [3]. For simplicity, we discuss it in the context of the K-
D-B tree. When splitting a K-D-B node along a plane, we may find entries that
lie directly across the plane. Figure 1(a) shows such a spatial decomposition
in which the only direct planar partitioning possible is in the ratio 1:4 ({A},
{B,C,D,E}); a better ratio is provided by {B,C}, {D,E}, but if either group
of entries is forced to include A, the bounding boxes of the two groups will
overlap, thereby breaking the SPP. The K-D-B approach is to split entry A and
its subtree. Figure 1(b) shows the overflowing node M and Figure 1(c) the effect
of executing a forced split of A.

Virtual Forced Splitting, Demotion and the BV-Tree 141

J

F G H

A B

C

D E

(a) Five index partitions
and their subregions.

M A B C D E

P F G H J

(b) Node M is overflowing; no
disjoint balanced split is avail-
able.

M′ Au B C N Ad D E

Fu Gu Hu Fd Gd Hd J

X Y

(c) FS-tree split of node M (into M′ and
N) splits A and its subtree forcibly.

B CM′ F G H JP D EN

X A Y

(d) VFS-tree split of node M elevates en-
try A into the new root.

Fig. 1. Forced vs virtually forced splitting (leaf pages indicated by whole or half circles)

The alternative is to elevate the entry into the level above while promoting
the parent entries of the two new nodes, as in Figure 1(d). We refer to this
as elevation to distinguish it from the usual post-and-grow promotion of new
node parents (Freeston refers to elevated entries as guards). The effect of this on
node occupancy is strictly local; that of the parent node has increased further
than would normally be the case, but (unless the parent node then overflows) no
further reorganisation is required. In general, further splitting can cause nodes
to be elevated more than once, and, indeed, elevations can occur within subtrees
underneath an elevated node.

We are left with the issue of how to execute a search in a tree with elevated
entries. It is not correct to simply treat an elevated entry as a normal unelevated
one (we shall refer to such unelevated entries as “primary” entries), as the region
it describes is not disjoint from the regions described by the primary entries in
the node in which it finds itself and, in fact its contents really belong distributed
in the subtrees under at least two different entries in this node. In practice,
an elevated entry can only be correctly interpreted in the level it was elevated
from, i.e. its “natural” level. For this reason, during a search down the tree, an
elevated entry must not be considered as a potential branch in the search path
in the level at which it occurs. Instead it is merely picked up and carried down
as the search progresses down the tree until the search arrives at the elevated
entry’s natural level. At this point it is considered as if it had never been elevated
in the first place. In Figure 1(d), this means carrying entry A into the subtree

142 A.P. Sexton and R. Swinbank

of either entry X or Y pending its consideration as required. We therefore refer
to a set of elevated entries carried down the tree in this way as a pending set.
This reconstructs the semantics of the forced split of entry A on-the-fly, and so
we also refer to A as being virtually-split and call trees of this kind virtual forced
split trees (VFS-trees). There are a number of concerns that must be addressed
to make this work:

Elevation Export Upperbound: A split might cause more than one entry
to be elevated. If too many entries are elevated, then one or both of the split
nodes they are elevated from may become under-occupied. Therefore a practical
scheme must limit the number of entries that can be elevated from a node.

Elevation Import Upperbound: Elevated entries in a node occupy space
that could otherwise be occupied by primary entries, thus reducing the fan-
out of the node. In extreme cases, if there were not enough space for at least
one primary entry, the tree would fail. A practical scheme must provide an
upperbound guarantee on the number of entries that can be elevated into a node,
lest the structure deteriorate from log-based search and update cost behaviour,
and ensure that the node’s page size is large enough to accommodate the required
number of elevated entries. While the upperbound guarantee is specific to the
concrete VFS-tree scheme, we solve the page size concern by implementing nodes
as buckets consisting of one primary and zero or more secondary disk pages.
Primary entries are permitted to occupy primary pages only and the node is
considered full when the primary page is full of primary entries. Elevated entries
fill up remaining space in the primary page before overflowing into the secondary
node pages, which are allocated as required. This scheme is slightly different to
that suggested by Freeston [3] and Samet [10], which has pages of increasing size
at higher levels in the tree (although of fixed size in any given level).

Over-Elevation: If an elevated entry is split, both resulting entries are just as
elevated as the orignal entry was, but, as the regions described are smaller, one
or both of them may no longer need to be virtually split at all. Accumulation of
unnecessarily elevated entries causes nodes to become excessively large and, in
the case of the BV-Tree, would cause the critical guarantee on the upperbound
of the number of elevated entries in a node to be broken. Such entries must
therefore be demoted. A similar source of over-elevated entries arises during
deletion, when two primary entries are merged, causing elevated entries that
were virtually split to now be demotable into the new merged sub-tree.

2.3 The BV-Tree

The BV-tree [3] is a practical VFS-Tree. The key to how it provides the guaran-
tees required lies in its approach to region decomposition based on the removal
of holes from regions, with a containment relationship between resulting regions:
namely any two regions in a BV-Tree decomposition must either be disjoint or
one must contain the other.

When a BV-node overflows, a subregion of the node’s region is identified which
contains between 1/3 and 2/3 of the node’s primary entries. Separation of the

Virtual Forced Splitting, Demotion and the BV-Tree 143

A

B
C

D

E

(a) Holey region decomposition.

A

B
C

D

E

(b) Exploded to show true region extent.

Fig. 2. Meaning of regions described by a collection of boundaries

entries that fall within this subregion from those outside it corresponds to the
formation of a hole in the outer region. As the nodes undergo further insertions
and node splits, a spatial decomposition of holey regions develops, as shown in
Figure 2.

The containment requirement means that, when a node is split, the split
boundary, S, divides the region, P , of at most one primary entry. Every other
primary region in the node is either contained by S, in which case it will go into
the split node corresponding to the hole defined by S, or either contains P or is
disjoint from S, in which case it will go into the split node corresponding to the
remnant region without the hole. The only problem is the entry corresponding
to P itself, part of which belongs in the split node corresponding to the hole,
whereas the remainder belongs in the remnant node. This entry, then, is the only
primary entry that must be elevated from a single node split, thus providing the
required elevation export upperbound.

Note that elevated entries in a splitting node may, just like primary entries, lie
across the split boundary and require further virtual splitting. Given a number
of elevated entries of a single natural level, at most one of those entries will
require elevation by virtue of the containment property. In general, therefore,
the split of a node of level L may require as many as L+1 entries to be elevated
into the level above: one of each natural level from 0 to L.

In a BV-tree with no over-elevated entries, there can not be more than one
elevated entry per level per primary entry. The proof is too long to include here
in detail, but the basic insight is that every elevated entry in a node must be
virtually split across at least two primary entries. We say that an elevated entry
E dominates a primary entry P if E contains P and there is no other elevated
entry E′ of the same natural level as E which is contained by E and which
contains P . Any such E′ would describe a hole in E and, since P is contained in
E′, no part of E could then belong inside P , i.e. E could not then be virtually
split across P . Hence any elevated entry is only virtually split across primary
entries that it dominates and, possibly, the least (in containment order) primary
entry that contains it. If the set dominated by an elevated entry is empty, then it
is over-elevated and can be demoted. Alternatively, if the dominated set of E is
a singleton, {P}, and if P also contains E (i.e. their boundaries coincide), then
E can be demoted into P . Since the maximum number of distinct dominated
sets is the number of primary entries in the node, we get the required result and
satisfy the elevated import upperbound requirement.

144 A.P. Sexton and R. Swinbank

R

B
S

Fig. 3. Parent regions R
and S

A

B
C

qD

E

Fig. 4. Position of split
between R and S

R1 S1 B0

A0E0 C0 D0

Fig. 5. BV-tree

The holey regions that entries represent in a BV-Tree could be arbitrarily
complex, which leads to a problem in representing them in a node. Freeston’s
solution is to record only the outer boundary of the region with the entry, al-
lowing its holey structure to be inferred from other outer boundaries recorded
in other entries in the node. If an entry is separated from its holes by eleva-
tion, this may mean that the entry is included unnecessarily in a pending set,
which Freeston refers to as a guard set. However the hole will be discovered on
descent into the appropriate subtree, allowing the inferred holey structure to be
discerned and the entry discarded. For example, consider a search for point q in
the tree of Figure 4. On examination of the root node, the point is found to be
contained in regions S and B; descent into the subtree of S accompanied by B
in the pending set reunites B with holes C and D, indicating that the point is,
in fact, to be found in the child of entry C.

3 Reduction and the RVFS-Tree

We introduce the concept of reduction of VFS-Trees to provide a conceptual
framework to address the above issues. We suggest that the key to understanding
and designing algorithms on VFS-Trees in general and the BV-Tree in particular
is to recognise that a VFS-Tree is merely a compact storage representation for
a simpler balanced forced split tree, a reduced VFS-Tree (RVFS-Tree), derived
from the VFS-Tree, which is never materialised on disk but, rather, is generated
lazily in memory on demand.

We introduce a reduce operation that converts a full VFS-Tree into the associ-
ated RVFS-Tree. RVFS-Trees contain no elevated entries and are fully balanced,
although nodes may suffer from under-occupancy or over-occupancy (i.e. more
entries than can fit in a normal node). Reduction consists essentially of the ex-
ecution of the hitherto avoided forced splits. However an RVFS-tree is not a
conventional FS-tree, because a full RVFS-node does not split when an elevated
entry is reduced into it — it merely becomes ‘overfull’. The RVFS-tree is not
a practical access method, but generalises the conversion required to search a
VFS-tree fragment, and hence underlies every VFS-tree operation.

When we carry an elevated entry, in a pending set, down a path in a tree
as part of a search or a reduction operation, it is important to remember that
although the entry describes a whole sub-tree, we should really only be carrying

Virtual Forced Splitting, Demotion and the BV-Tree 145

that part of the sub-tree that belongs down that path. That is, if an elevated
entry, e, is virtually split across two primary entries, p and q, then some of
the contents of the node pointed to by e belong under p, and some under q. If
we descend the tree into p, carrying e in the pending set for this descent, we
should exclude any contents of the e node which belong under the q branch from
consideration. Since we are proceeding lazily, we do not eagerly forcibly split the
e subtree at the first opportunity, but annotate it with the branching entry, in
this case p, and write it as ep. This annotation is inherited by the children of e,
and, when accessing the contents of an annotated node, we simply discard any
child whose region does not intersect that of the child’s annotations.

Reduction of a VFS-Tree is a recursive process operating on a node, N , which
is of level L, and a pending set P . It begins with the root node and an empty
pending set. A new RVFS node has to be constructed from N . It will also be
of level L. Let Q be the set of primary entries in N together with the subset
of (possibly annotated) entries in the pending set P , whose natural level is L.
These will form the basis of the entries of the new node. The remaining elements
of the pending set, i.e. those whose natural level is less than L, plus all the
elevated elements in N , form a new master pending set M . From these will
be extracted the pending sets used to produce the subtrees for the new node.
The entries of the new node are then {reduce(q, Mq) | q ∈ Q} where Mq =
{mq | m ∈ M ∧ m ∩ q �= ∅}, where m ∩ q means the intersection of the regions
defined by the outer region boundary of the entries m and q.

Figure 6 shows a BV-tree and Figure 7 the RVFS-tree it yields under reduce.
The entries in the VFS-tree have their natural levels shown as subscripts. The

C0 P0 D0 E0 F0 G0 H0 J0 K0

R1 T1 B0 U1 V1 L0 M0 N0

X2 Y2 S1 A0

Fig. 6. VFS (BV) tree

C P AXR BR D E F BT M N AXS G H AYU J K AYV L AYS

R T SX U V SY

X Y

Fig. 7. Reduced VFS (BV) tree

146 A.P. Sexton and R. Swinbank

A

B
C

D

E
F

G H

J

K

L

M N

P

(a) Level 0.

R S

T

U

V

(b) Level 1.

X
Y

(c) Level 2.

Fig. 8. Region components of entries of different level in the BV-tree of Figure 6

associated spatial decomposition is given in Figure 8. In the RVFS-tree of Figure 7,
entry S now appears in the children of both entries X and Y. Note, however, that
the children of the two S entries differ; as entry L falls outside region X, it does
not appear in the subtree rooted on entry X, likewise neither do entries M and N
appear in Y’s subtree. The contents of leaf nodes are similarly restricted; entry B
appears straightforwardly as a child of entries R and T, but the contents of leaf
nodes BR and BT consist of the set of points from the original leaf rooted on B that
are contained in (inferred) regions R and S respectively. Finally, although entry
A0 appears in the root of the BV-tree in Figure 6, note that it does not appear
in every super-leaf level node; as region T is contained by region B, T falls into a
hole in A and contains no space also contained by A.

3.1 Algorithm Design for VFS-Trees

The sole published algorithm for the BV-tree is that of exact-match (insert is
described only by example). The key problem in implementing other algorithms
is twofold.

1. For non-updating algorithms (i.e., searches), how can we choose which ele-
vated entries should be carried down in the pending sets in every step?

2. For updating algorithms such as insert and delete, and subordinate algo-
rithms such as demotion of over-elevated entries and splitting of nodes, what
is the correct semantics of such operations in the face of complex arrange-
ments of elevated entries of differing levels within the underlying tree?

For example, if insertion of a point into the BV-Tree of Figure 6 results in
descending into Y2, carrying the pending set {S1, A0}, then descends into S1,
carrying the pending set {A0}, inserts the point there, causing A0 to split, then
we need to post into the parent of A0. But which node is the parent of A0?
The root node is certainly a candidate, for A0 physically hangs from it, but
we actually descended two levels before reaching A0, so the root appears to
be only a grandparent of A0. This suggests S1 is the parent, as the last node
descended into before descending into A0. However, when one considers that not
all the contents of the node A0 belongs under S1, nor even under Y2, it seems
questionable to post to S1.

To resolve this and more convoluted cases, we need a guiding principle. We
offer the following: To understand what an operation should do on a VFS-Tree,

Virtual Forced Splitting, Demotion and the BV-Tree 147

consider what effect that operation should have on the corresponding, and much
simpler, RVFS-Tree, and design the operation on the VFS-Tree accordingly. In
the example above, consider the reduced tree in Figure 7. Here we immediately
see our confusion was caused by a misinterpretation of A0. What we actually
inserted into was not A0, but AYS; that part of A0 that belongs in that leaf
position. However, what has to be split is not AYS, but the whole A0. This can
only be split at the root, although one or both of the split parts might then be
demotable down X2 or Y2, depending on the split boundary chosen.

Range Query: A multidimensional range query on an RVFS-Tree must descend
all branches of the tree whose regions intersect the range query, pruning any sub-
trees which do not intersect the query region as we proceed. In the VFS-Tree
case we do the same, but now we need to decide which elevated entries to carry
in the pending sets as we descend. In fact, any elevated entry that does not
intersect the query region will eventually be merged, by reduce, into a branch
of the RVFS-tree that will be pruned. Hence we need to carry down all and only
the elevated entries that intersect the query region.

Exact Match Query: This is a special case of the range query above where
the query region is a single point, and, as expected, the algorithm collapses to
precisely that described by Freeston in the BV-Tree case.

k-Nearest Neighbour: Hjaltason and Samet’s priority-queue implementation
of k-Nearest Neighbour searching [8] allows a tree to be searched ‘best-first’
rather than depth- or breadth-first, enqueueing tree entries in order of their
distance from the query point. This has an obvious and simple implementation
in an RVFS-Tree. The algorithm on the VFS-Tree is almost exactly the same,
except that the tree entries that are enqueued must be sufficient to (lazily) con-
struct the corresponding RVFS-Tree branch when it is dequeued and explored.
The necessary information that must be enqueued is given by the parameters to
the recursive reduce operation: namely a pair consisting of a VFS-Tree entry
(possibly annotated) and the pending set of (again possibly annotated) elevated
entries being carried down with that entry.

Insert: Here the published description, while correct as far as it goes, does not
quite give the full story. It describes using the exact match algorithm to identify
the correct leaf page to insert the item into, and, if the leaf page overflows, the
usual post and grow scenario follows. What is not entirely clear is that post
and grow can lead to situations where one or more elevated entries need to be
demoted and, if in the original descent of the tree the pending sets were restricted
to those necessary for the exact match phase only, there may be insufficient
information available even to identify that a demotion is necessary or to carry
it out correctly. We discuss this in more detail in Section 3.2.

We observe that searching a ‘virtual’ RVFS-tree while traversing the physical
VFS-tree creates the possibility of multiple visits to the same page during a
query. In the example of Figure 6, a region query of region A based strictly on
reduce would be required to visit the associated physical page five times; once

148 A.P. Sexton and R. Swinbank

B2 D2 N1 C0 K2 L2 J1

A3 H3 F2 E1 G0

(a)

A3/B2/N1

C0 D2

E1

F2

G0H3J1

K2
L2

(b) (c)

Fig. 9. VFS-tree fragment and associated regions

for each of the A subregions in each subtree, represented by the children of AXR,
AXS, AYU, AYV and AYS. We rely on the practical fact that each subsequent
visit is likely to find the page still in the buffer pool. The obvious optimisation of
inspecting A only once, on its first visit, and considering all its contents rather
than just those contents specific to the current branch of the search, is certainly
possible, but requires careful reasoning in the general case to ensure correctness.

3.2 Demotion

When descending into a VFS-Tree node as part of an insert operation, it is criti-
cal that the pending set at that point contains all elevated entries whose regions
intersect with that of the node rather than, as suggested in [3], merely those el-
evated entries that intersect with the insertion point. An example demonstrates
the problem; Figure 9(a) shows a VFS-tree fragment; the region boundaries
corresponding to entries in the tree are given in Figure 9(b). From the set of
boundaries given, part of the holey structure of entries E1 and C0 can be in-
ferred and, as can be seen in Figure 9(c), entry C0 is not only virtually split
across entries B2 and D2 but also across E1 and N1. Suppose now that the point
q (see Figure 9(c)) is inserted into the leaf child of entry C0, causing it to over-
flow and post a new level 0 entry, say M0, into the node containing entry C0.
If M0, a hole in C0, is also contained in E1, then it is into the latter that it
should be demoted (via B2). If, however, E1 is not available for examination in a
pending set when M0 is posted, this can not be determined; M0 may be demoted
erroneously into N1 (via B2), and lost. Similarly, if M0 contains E1, but E1 can
not be examined, M0 may be considered demotable into N1, despite the fact that
it remains virtually split across E1 and N1.

The approach in [3] is essentially to construct only the part of the RVFS-tree
that indexes the ‘space’ of the insertion point. If, however, an entry becomes avail-
able for demotion, a larger part of the RVFS-tree is required. At each node on the
path from the root to the insertion point, the RVFS subtree corresponding to that
node must be constructable via the reduce operation. That is, the pending set for
that node must be not just the elevated entries whose regions intersect the query
point, but the those whose regions intersect the region of the node itself.

Virtual Forced Splitting, Demotion and the BV-Tree 149

Demotion causes another problem: it can trigger a chain of demotions that
update the VFS-Tree, causing problems in the lazy interpretation of the corre-
sponding RVFS-Tree. Consider again the overflow of the child of C0 in Figure 9,
but assume that M0 is coincident with D2. Neither C′

0 (the amended C0) nor
M0 is now virtually-split at level 2 and so can be demoted into B2 and D2 re-
spectively, however C′

0 remains virtually-split at level 1, across entries E1 and
N1. Note that entry C′

0 is now physically resident in the child of entry B2, but
that the entries across which it is virtually-split are elevated to higher posi-
tions in the tree. If the child of C′

0 now overflows and splits into two along the
boundary of region E1, the two entries resulting, say C′E

0 and C′N
0 must now be

demoted into E1 and N1 respectively. Suppose that we demote C′E
0 first, and in

doing so cause the child of entry E1 to overflow. This posts a new level 1 entry
into the root, and either E1 or the new entry is now likely to require demotion.
This leaves us in rather a difficult position — it is not clear whether we should
first perform this newly-required demotion or return to that of C′N

0 ; in either
case we would require some mechanism to record the requirement for the second
demotion while we perform the first, and what if that first demotion triggers
yet another set of demotions? Even if we decide to demote C′N

0 first, we must
recognise that the RVFS-tree we have constructed now no longer matches that
which would be produced by reduce on the amended VFS-tree on disk; we must
either take action to amend the RVFS-tree or begin again, and construct the
RVFS-tree from the root to enable demotion of C′N

0 .
The change to the RVFS-tree caused by the first demote is the real problem

here; we wish to demote two entries into an RVFS-tree, but in demoting the first,
we alter the underlying VFS-tree and thus the RVFS-tree into which the second
demotion is to take place. Because of the risk of changes being made to the
RVFS-tree by a demotion, we have taken the approach of explicitly restarting
the construction of the pending set corresponding to a demotable entry from the
root for every demotion: this involves simply descending the single path from the
root of the tree to the demotable entry in the usual way, collecting the pending
set as we proceed. In order to record the entries to be demoted we use a demote
queue. When, during insertion, an entry is found to be demotable, it is added
to the demote queue but no further action is taken. When the initial insertion
is complete, the first demotee in the demote queue is inserted into the VFS-tree
from the root; if this demotion itself necessitates further demotions, these are
scheduled using the queue in the same way. Insertion of the original point is only
complete once the demote queue is empty.

The requirement for demotion obviously increases the cost of inserting a point;
indeed Freeston [4] suggests that demotions might be postponed until a subse-
quent insertion passes through the node containing the prospective demotee(s),
allowing the cost to be amortized over future insertions. However, this strategy
suffers from a number of problems. First, delaying demotions in this way breaks
the BV-Tree guarantee on the number of elevated entries in a node. In particular
one can then have more than one elevated entry of the same natural level for
each primary entry in the node, this can cause the structure to fail if fixed size

150 A.P. Sexton and R. Swinbank

pages are used, even if these sizes are greater at higher levels in the tree. Second,
because demotion modifies the VFS-Tree, the insertion passing through the node
with the demotable entry can not continue until the local view of the RVFS tree
has been “refreshed”, from the modified VFS-tree. Hence it essentially has to be
restarted and can not be done on the fly.

From the description above it may not be clear that a cascade of demotions
will terminate, however it is certain to do so for a simple reason: demotion of an
entry of level n can only ever trigger a demotion of at most two entries of level
n+1. If every insertion and demotion caused a further pair of demotions, in the
worst case a single insertion into a tree of height h can cause 2h−2 demotions.

4 Experimental Results

For experimental evaluation, the performance of our BV-tree implementation
was compared against that of the R*-tree [1]. Both structures were implemented
in a common framework with a fixed page size, using the same core code to
provide primitive functions like reading entries from a node, and to handle in-
strumentation. Trees were constructed using artificially clustered datasets of
50,000 points in 2–16 dimensions. In all cases, cost of operations is measured in
disk IOs and assumes sufficient buffers available to ensure that a page need only
be read from disk once during execution of a single operation.

Figure 10(a) illustrates the average IO-cost to insert an entry into the tree.
Both trees demonstrate little variation with dimensionality since both select a
single path for insertion. The R*-tree insertion cost exceeds that of the BV-tree
by around 40%, suggesting that the amount of reorganisation due to reinsertion
in the former is greater than that caused by demotion in the latter.

Exact-match query cost was evaluated by querying every point known to be
in the tree and computing the average IO cost across all queries. The results are
given in Figure 10(b) and illustrate, as expected, that while the performance of
the R*-tree deteriorates in higher numbers of dimensions, that of the BV-tree
does not — simply because the BV-tree has the single path property and each
tree was of the same height in each dimensionality case.

 0

 2

 4

 6

 8

 10

 4 8 12 16

M
ea

n
di

sk
 p

ag
e

IO
s

pe
r

in
se

rt

Dimensions

BV
R*

(a) Insertion Cost

 0

 15

 30

 45

 60

 75

 4 8 12 16

M
ea

n
di

sk
 p

ag
e

IO
s

pe
r

qu
er

y

Dimensions

BV
R*

(b) Exact Match Cost

 0

 400

 800

 1200

 1600

 4 8 12 16

M
ea

n
di

sk
 p

ag
e

IO
s

pe
r

qu
er

y

Dimensions

BV
R*

(c) 50-NN Cost

Fig. 10. Performance results

Virtual Forced Splitting, Demotion and the BV-Tree 151

Figure 10(c) shows the average cost of retrieving the 50 nearest neighbours of
a selected query point. In each case, the cost is the average over 19 query points,
spaced equally along the diagonal of the space (irrespective of the dimension-
ality). In as many as 8 dimensions the performance of the two structures is
comparable, but at higher dimensionality the R*-tree reads up to 40% more
pages from disk than does the BV-tree.

5 Conclusions and Further Work

We have presented a new view of the BV-Tree, and its generalisation into a class
of Virtually Forced Split trees. Further we have presented a reduction operation
that transforms VFS-Trees into a simpler Reduced VFS-Tree. This approach has
provided us with the tools to reason about subtle algorithmic issues in the BV-
Tree and to refine a number of aspects of the structure that have not heretofore
been published in the literature. Using this framework, we were not only able
to design and implement correct insertion and exact match algorithms for the
structure, including correct treatment of the complex demotion problem, but
implement multidimensional range query and k-Nearest Neighbour algorithms
as well. As a result, we have been able to present the first, to our knowledge,
experimental performance results for the BV-Tree. These results show that the
BV-Tree is, in general, very well behaved and, on a multidimensional clustered
dataset, it outperforms the R*-Tree on insertion costs and exact match costs
in all numbers of dimensions, and k-Nearest Neighbour costs in all numbers of
dimensions except dimensionality 2 (in which it requires approximately 1.5 times
the number of IOs as in the R*-Tree).

The above results, along with more detailed explanations and performance
analyses, can be found in [11]. We are currently working on formal proofs of
correctness of the algorithms, based on the framework described here, using
separation logic.

References

1. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-tree: An efficient
and robust access method for points and rectangles. In: Proc. ACM SIGMOD, pp.
322–331 (1990)

2. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Comm. ACM 18(9), 509–517 (1985)

3. Freeston, M.: A general solution of the n-dimensional B-tree problem. In: Proc.
ACM SIGMOD, San Jose, California, May 1995, pp. 80–91 (1995)

4. Freeston, M.: On the complexity of BV-tree updates. In: Proc. 2nd Int. Workshop
on Constraint Database Systems, Delphi, Greece, pp. 282–293 (1997)

5. Freeston, M.: Advances in the design of the BANG file. In: Proc. 3rd Int. Conf. on
Foundations of Data Organization and Algorithms, June 1989, pp. 322–338 (1989)

6. Freeston, M.: The BANG file: A new kind of grid file. In: Proc. ACM SIGMOD,
San Francisco, May 1987, pp. 260–269 (1987)

152 A.P. Sexton and R. Swinbank

7. Guttman, A.: R-trees: A dynamic index structure for spatial searching. SIGMOD
Record 14(2), 47–57 (1984)

8. Hjaltason, G.R., Samet, H.: Ranking in spatial databases. In: Proc. 4th Int. Symp.
on Large Spatial Databases, pp. 83–95 (1995)

9. Robinson, J.T.: The K-D-B-tree: A search structure for large multidimensional
dynamic indexes. In: Proc. ACM SIGMOD, pp. 10–18 (1981)

10. Samet, H.: Decoupling partitioning and grouping: Overcoming shortcomings of
spatial indexing with bucketing. ACM Trans. Database Syst. 29(4), 789–830 (2004)

11. Swinbank, R.: Virtual Forced Splitting in Multidimensional Access Methods. PhD
thesis, School of Computer Science, University of Birmingham, UK (2008) (due for
completion, May 2008)

A Functional Data Model Approach to Querying

RDF/RDFS Data

João Martins, Rui Nunes, Merja Karjalainen, and Graham J.L. Kemp

Department of Computer Science and Engineering,
Chalmers University of Technology, SE-412 96 Göteborg, Sweden

Abstract. We are developing a multi-database architecture to provide
integrated access to heterogeneous, distributed databases. The work de-
scribed here is motivated by the desire to have RDF/RDFS collections
as component data resources in this system, along with relational and
other databases. To achieve this, the RDF/RDFS collection, like all other
component resources in the system, is mapped to the functional data
model, and a query translator is implemented that can translate queries
originally expressed in Daplex (the query language associated with the
functional data model) into SPARQL. SPARQL is the prominent query
language for RDF and it is used here to bridge between the functional
data model and the Semantic Web.

1 Introduction

In earlier work a federated system was built in which queries that require data
values from distributed heterogeneous data resources were processed by a pro-
totype program called the P/FDM Mediator [11,4]. Tasks performed by the
P/FDM Mediator include determining which external databases are relevant in
answering users’ queries, dividing queries into parts that will be sent to dif-
ferent external databases, translating these sub-queries into the language(s) of
the external databases, and combining the results for presentation. A new im-
plementation of the P/FDM Mediator, with a more modular architecture, has
been undertaken recently [9]. Resource Description Framework (RDF) collections
described in RDF Schema (RDFS) are being used increasingly with biological
data, and in order to make these RDF/RDFS collections accessible as part of a
database federation we have implemented a mapping between Daplex (the query
language used in the P/FDM Mediator) and the SPARQL Protocol And RDF
Query Language (SPARQL).

In this paper we focus on the code generator that carries out query translation
from Daplex to SPARQL. In Section 2 we describe the functional data model,
which is central to our work, and how this can be mapped onto RDF/RDFS. In
Section 3 we show how queries expressed in Daplex against an FDM schema can
be translated automatically to SPARQL. Some of the design issues that arose in
this work are discussed in Section 4, and we outline directions for future research.
The contributions of this work are summarised in Section 5.

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 153–164, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

154 J. Martins et al.

declare project ->> entity
declare code(project) -> string
declare title(project) -> string
declare duration(project) -> integer
key_of project is title

declare course ->> entity
declare level(course) -> integer
declare units(course) -> integer
declare code(course) -> string
key_of course is code

declare person ->> entity
declare forename(person) -> string
declare surname(person) -> string
key_of person is surname, forename

declare member_of_staff ->> person
declare position(member_of_staff) -> string
declare room(member_of_staff) -> string

declare student ->> person
declare year(student) -> integer

declare researcher ->> member_of_staff
declare employed_on(researcher) -> project

declare teacher ->> member_of_staff
declare supervises(teacher) ->> project

declare undergrad ->> student
declare takes(undergrad) ->> course

declare postgrad ->> student
declare works_on(postgrad) -> project

declare section ->> entity
declare section_name(section) -> string
declare has_course(section) -> course
declare has_lecturer(section) -> teacher
key_of section is key_of(has_lecturer),

key_of(has_course)

Fig. 1. FDM schema for a university database in Daplex syntax

2 Data Models

2.1 The Functional Data Model and P/FDM

The P/FDM Mediator is implemented as an extension of the P/FDM database
management system [8], which is an object database management system that is
based on a semantic data model — the functional data model (FDM) [14]. The
basic concepts in the P/FDM database are entities and functions. Entities are
used to represent conceptual objects, while functions represent the properties of
an object. Functions are used to model both scalar attributes and relationships.
Functions may be single-valued or multi-valued, and their values can either be
stored or computed on demand. Entity classes can be arranged in subtype hier-
archies, with subclasses inheriting the properties of their superclass, as well as
having their own specialised properties. As an example, the Daplex schema for
a university database is given in Figure 1.

2.2 Mapping FDM onto RDF/RDFS

Statements in RDF are expressed as triples. When mapping between a P/FDM
schema and RDFS the following rules [6] were used:

– a P/FDM class c defined as an entity (declared as c ->> entity) maps to
an RDF resource of type rdfs:Class, where rdfs is the namespace prefix
for the RDF Schema descriptions;

– a P/FDM class c declared to be a subtype of another class s (declared as c ->>
s) maps to an RDF resource of type rdfs:Class, with an rdfs:subClassOf
property the value of which is the class named s;

– a P/FDM function f declared on entities of class c, with result type r (de-
clared as f(c) -> r) maps to an RDF resource of type rdfs:Property with
an rdfs:domain of c and a rdfs:range of r.

A Functional Data Model Approach to Querying RDF/RDFS Data 155

<rdfs:Class rdf:about="&unidb;person"/>
<rdf:Property rdf:about="&unidb;#forename">

<rdfs:domain rdf:resource="&unidb;#person"/>
<rdfs:range rdf:resource="&rdfs;Literal"/>

</rdf:Property>
</rdfs:Class>
<rdf:Property rdf:about="&unidb;#surname">

<rdfs:domain rdf:resource="&unidb;#person"/>
<rdfs:range rdf:resource="&rdfs;Literal"/>

</rdf:Property>
<rdfs:Class rdf:about="&unidb;member_of_staff">

<rdfs:subClassOf rdf:resource="&unidb;person"/>
</rdfs:Class>
<rdfs:Class rdf:about="&unidb;researcher">

<rdfs:subClassOf rdf:resource="&unidb;member_of_staff"/>
</rdfs:Class>
<rdfs:Class rdf:about="&unidb;teacher">

<rdfs:subClassOf rdf:resource="&unidb;member_of_staff"/>
</rdfs:Class>
<rdf:Property rdf:about="&unidb;employed_on">

<rdfs:domain rdf:resource="&unidb;researcher"/>
<rdfs:range rdf:resource="&unidb;project"/>

</rdf:Property>

Fig. 2. An extract from the RDFS describing the university database

Figure 2 shows part of the class hierarchy involving person and some sub-
classes, and a representation of function employed on in RDFS.

Some of the information that is present in the FDM version of the schema is
absent in the RDFS version. In the FDM schema, the cardinality of functions
must be declared, for example the relationship function employed on is declared
to be single-valued (denoted by ->), whereas the relationship function supervises
is multi-valued (denoted by ->>). There is no possibility to make this distinction
in the RDFS version. Another difference is that the key of each entity class must
be specified in the FDM schema, whereas the keys are not enforced in RDFS.

Relationships between instances can be expressed as RDF triples where a sub-
ject represents an entity identifier, a predicate will stand for a relationship name
and the object identifies another entity. It is also possible to add a class/subclass
hierarchy making use of the RDFS data model which, in common with the FDM,
follows the principle of data independence, allowing an abstraction over the data
storage system [7].

2.3 RDF/RDFS Data Representation

In the RDF/RDFS data representation used here, a URI identifying a resource
consists of key information. Thus each resource has a unique identifier. In the
case of composite keys, a dot is used as a separator between the parts of a key.
However, using key information in this way is not important for the SPARQL
code generation task that is the focus of this paper — in practice, no information
about keys is needed in order to query RDF data since joins are implicit. In RDF,
an object of a foreign key relationship is an RDF URI reference, and not a data
value used to identify the object. Within an RDF graph a node can serve as
both the object and subject of relationships.

156 J. Martins et al.

<unidb:researcher rdf:about="&unidb;Doe.John">
<unidb:position rdf:datatype="&xsd;string">RA</unidb:position>
<unidb:surname rdf:datatype="&xsd;string">Doe</unidb:surname>
<unidb:forename rdf:datatype="&xsd;string">John</unidb:forename>
<unidb:room rdf:datatype="&xsd;string">S36</unidb:room>
<unidb:employed_on rdf:resource="&unidb;PFDM_Project"/>

</unidb:researcher>

Fig. 3. XML serialisation of RDF data: instance of researcher

Figure 3 illustrates some aspects of the mapping between FDM data and
RDF/RDFS. It represents an instance of researcher which is a subclass of mem-
ber of staff. The first statement starts with unidb:researcher meaning that an
instance of researcher is being declared, and is identified by “&unidb;Doe.John”
(using rdf:about) which is a URI reference representing a subject that is itself
a resource. Next, the properties of this instance are declared, and typed literals
(rdf:datatype) are used to define the properties and their values
(unidb:position, unidb:surname, unidb:forename, unidb:room). Finally, a function
employed on is declared. This function is a property having a domain researcher
and a range project (cf. Figure 2). Thus, it is a property of researcher and
is identified by “&unidb;PFDM Project”, a URI reference identifying a project
(rdf:resource).

3 Query Processing

In the P/FDM Mediator, Daplex queries expressed against a federated schema
are first compiled into an internal Intermediate Code (“ICode”) [5] which is a
Prolog term structure that resembles a list comprehension. ICode can be anal-
ysed and manipulated conveniently using Prolog [2], and plays an important
role in query processing within the mediator. Various transformation steps are
performed before fragments of ICode that refer to the same component database
are grouped together into sub-queries. ICode representing a sub-query is passed
to a wrapper, which invokes a code generator to translate the ICode for the
sub-query into the query language of the component database (e.g. SQL if the
component resource is a relational database) [9].

In this paper we focus on the code generation task in the case of an RDF/RDFS
component database. Here, the ICode form of the query is translated into a
SPARQL query by a code generator, so that the query can be executed. There are
several RDF query languages. Currently, SPARQL [12] is becoming the prominent
RDF query language, so we have chosen it for our work.

3.1 SPARQL Query Structure

A simple query in SPARQL consists of two parts: a SELECT clause and a
WHERE clause. It is possible to further restrict query results by constraining
the allowable bindings of variables to RDF terms using a FILTER clause.

A Functional Data Model Approach to Querying RDF/RDFS Data 157

Daplex query:

for each t in teacher
for each s in has_lecturer_inv(t)

for each c in has_course(s) such that level(c) = 4
print(surname(t), section_name(s), code(c));

SPARQL query 1:

SELECT ?surname ?section_name ?code
WHERE
{

?t a unidb:teacher;
unidb:surname ?surname.

?s unidb:has_lecturer ?t;
unidb:has_course ?c;
unidb:section_name ?section_name.

?c unidb:code ?code;
unidb:level ?level.

FILTER (?level = 4)
}

SPARQL query 2:

SELECT ?surname ?section_name ?code
WHERE
{

?t a unidb:teacher.
?s unidb:has_lecturer ?t.
?s unidb:has_course ?c.
?t unidb:surname ?surname.
?s unidb:section_name ?section_name.
?c unidb:code ?code.
?c unidb:level ?level.

FILTER (?level = 4)
}

Fig. 4. Equivalent SPARQL queries

The same query can be written in different ways in SPARQL to produce the
same results. Some of the equivalent alternatives make use of syntactic sugar
to reduce the query length and improve readability. In the present work, how-
ever, it is important that the SPARQL query that is generated should have
a simple structure, so that the code generation task is simplified. For example,
Figure 4 shows two alternative versions of equivalent SPARQL queries that print
the surnames of all teachers, together with the names of the sections that they
teach, and the code of the course of which the section is a part, for fourth year
courses only. The subject variables each appear only once when defining pat-
terns using the same subject in query 1. While grouping together all parts of
the query that relate to the same subject makes the query more readable, the
flatter structure of query 2 is more uniform and, therefore, the second version
was chosen as the target for automatic code generation from ICode. Comparing
the SPARQL and Daplex queries (Figure 4) the relationship between these can
be seen easily. All variables in the SELECT clause are related to variables in the
print statement, all entities and functions used in Daplex are related with triples
appearing in the SPARQL WHERE clause, and the condition expressed in such
that clause of the Daplex query relate to an expression in FILTER clause of the
SPARQL query.

Information about person instances are represented in RDF/RDFS at the
most specialised level. Thus, for example, the names of some person instances
might be represented at the person level, while others who are members of staff
will be represented at the member of staff level, and others who are researchers
will be represented at the researcher level (as shown in Figure 3) which, in
this case, is a leaf class in the person class hierarchy. If a query requests the
names of all persons, then information should be retrieved from all levels in

158 J. Martins et al.

(a) Daplex query:

for each p in person
print(forename(p), surname(p));

(b) SPARQL query 1:

SELECT ?forename ?surname
WHERE
{
{

?s a unidb:person.
} UNION {

?person1 rdfs:subClassOf unidb:person.
?s a ?person1.

} UNION {
?person2 rdfs:subClassOf ?person1.
?s a ?person2.

}
?s unidb:forename ?forename.
?s unidb:surname ?surname.
}

(c) SPARQL query 2:

SELECT ?forename ?surname
WHERE
{
{

?s a unidb:person.
} UNION {

?s a unidb:member_of_staff.
} UNION {

?s a unidb:student.
} UNION {

?s a unidb:researcher.
} UNION {

?s a unidb:teacher.
} UNION {

?s a unidb:undergrad.
} UNION {

?s a unidb:postgrad.
}
?s unidb:forename ?forename.
?s unidb:surname ?surname.
}

Fig. 5. Print the names of all persons

the person hierarchy. One approach to this is to examine the metadata of the
schema to identify the names of all of the classes below person in the hierarchy
automatically, and to generate a query that retrieves the names recorded with
instances of each class in the data, taking the union of these sub-queries as the
result of the original query. This gives rise to a query with many sub-queries
(one for each class in the hierarchy), as shown in Figure 5(c). An alternative
approach taken in this work is to examine the metadata of the schema to find
the depth of the tree rooted at person, and to construct a query that retrieves
the names of instances at each level of the class hierarchy, taking the union of
these sub-queries as the result of the original query. This can result in a more
compact SPARQL query, as shown in Figure 5(b).

3.2 Query Translation

Figure 7 illustrates how Daplex queries are translated to SPARQL. In the work
described here, the existing Daplex compiler is used to construct an ICode ver-
sion of the query. The ICode is then used to create three term lists that reflect
the structure of the eventual SPARQL query: a SELECT list, a WHERE list
and a FILTER list. These term lists are then used to build the SPARQL query.
The query translation steps are described below with reference to the example
query shown in Figure 6. The query translation system has been implemented
in Prolog, and has benefited from Prolog’s pattern matching and list processing
facilities. The SPARQL queries generated in this work have been executed using
the ARQ implementation of SPARQL for the Jena Semantic Web framework1

to retrieve results from RDF/RDFS documents.

1 http://jena.sourceforge.net/

A Functional Data Model Approach to Querying RDF/RDFS Data 159

(a) Daplex query:

for each u in undergrad
for each c1 in takes(u)

for each c2 in takes(u) such that
level(c1)=level(c2)+2 or units(c1)=1

print(code(c1), code(c2), surname(u));

(b) ICode:

[var(evar8),var(evar9),var(evar10)]
[
generate(undergrad,var(uevar1)),
generate(takes,[undergrad],[var(uevar1)],course,var(uevar2)),
generate(takes,[undergrad],[var(uevar1)],course,var(uevar3)),
logical_or([

restrict(level,[course],[var(uevar2)],var(evar4)),
restrict(level,[course],[var(uevar3)],var(evar5)),
expression(var(evar6),[var(evar5)],expr(+,var(evar5),2)),
expression([],[var(evar4),var(evar6)],expr(=,var(evar4),var(evar6)))

],[
restrict(units,[course],[var(uevar2)],var(evar7)),
expression([],[var(evar7)],expr(=,var(evar7),1))

]),
restrict(code,[course],[var(uevar2)],var(evar8)),
restrict(code,[course],[var(uevar3)],var(evar9)),
restrict(surname,[undergrad],[var(uevar1)],var(evar10))

]

(c) SELECT list:

[?code=var(evar8),?code_1=var(evar9),?surname=var(evar10)]

WHERE list:

[gn(undergrad,obj1,var(uevar1)),
gn(takes,undergrad,obj1,var(uevar1),course,obj2,var(uevar2)),
gn(takes,undergrad,obj1,var(uevar1),course,obj3,var(uevar3)),
rs(level,obj2,var(evar4)),
rs(level_1,obj3,var(evar5)),
rs(units,obj2,var(evar7)),
rs(code,obj2,var(evar8)),
rs(code_1,obj3,var(evar9)),
rs(surname,obj1,var(evar10))

]

FILTER list:

[or([ex(?level,=,?level_1+2)],[ex(?units,=,1)])]

(d) SPARQL query:

SELECT ?code ?code_1 ?surname
WHERE {
?obj1 a unidb:undergrad.
?obj1 unidb:takes ?obj2.
?obj1 unidb:takes ?obj3.
?obj2 unidb:level ?level.
?obj3 unidb:level ?level_1.
?obj2 unidb:units ?units.
?obj2 unidb:code ?code.
?obj3 unidb:code ?code_1.
?obj1 unidb:surname ?surname.
FILTER ((?level=?level_1+2 || ?units=1))
}

Fig. 6. A Daplex query is first translated to ICode. The SPARQL code generator
constructs a SELECT list, a WHERE list and a FILTER list from the ICode elements,
then uses these three lists to build the SPARQL query.

160 J. Martins et al.

Processing ICode. ICode is represented in Prolog as a list containing different
qualifiers. An example of a Daplex query and its equivalent ICode is presented
in Figure 6.

The generate qualifiers result from clauses that generate entity instances,
either by iterating over instances of a named class (generate/2):

generate(Class, InternalVarForClass)

or evaluating a relationship function (generate/5):
generate(Function, [ArgumentType], [InternalVarForArgumentType],

ResultType, InternalVarForResultType)

The ICode in Figure 6 has one generate/2 qualifier that iterates over the under-
grad class, and two generate/5 qualifiers that apply the relationship function
takes to the given undergrad instance.

A restrict/4 qualifier is present for each scalar attribute mentioned in a
query, and has the form:

restrict(ClassAttribute,[Class],[InternalVarForClass], InternalVarForClassAttribute)

In this example, different instances have attributes with the same name (in this
case, code and level). Care is taken when generating the SPARQL query to ensure
that different variables (?code, ?code 1, ?level, ?level 1) are used to ensure that
the correct values are retrieved.

For each condition expressed in the query, one or more expression/3 qual-
ifiers will be generated. An expression qualifier can take different forms de-
pending on the condition complexity. The expression/3 qualifiers in Figure
6 represent equality tests and a simple arithmetic expression in the original
Daplex query. Inequality tests are represented in a similar way (not shown in
this example). Disjunctions in a query give rise to logical or/2 qualifiers in
the ICode, like the one shown in Figure 6. Conjunctions can be represented by
similar logical and/2 qualifiers, but these are normally flattened in a prepro-
cessing step, since a list of qualifiers is implicitly understood to be a conjunction
of qualifiers.

Processing Term Lists. The SPARQL query is built from the contents of the
three term lists: a SELECT list, a WHERE list and a FILTER list. Examples of
these are shown in Figure 6(c). These three lists are generated automatically from
the ICode, which is processed one element at a time. As each ICode qualifier is
processed, one or more of the SELECT, WHERE and FILTER lists are updated,
as shown in Figure 7.

There is a very close correspondence between the SELECT, WHERE and
FILTER lists, and the eventual SPARQL query. This can be seen by comparing
(c) and (d) in Figure 6. The SELECT clause is the first clause of a SPARQL
query, and is built from the elements in the SELECT term list that originate
from restrict qualifiers corresponding to attributes that feature in the print
part of a Daplex query. Statements in the WHERE clause are issued from all
instances, relationships and attributes present in a Daplex query. In SPARQL,
all variables used in the SELECT and FILTER clauses must be instantiated

A Functional Data Model Approach to Querying RDF/RDFS Data 161

WHERE FILTER

SPARQL Query

logical_orexpressionrestrictgenerate

ICode

Daplex Query

Qualifiers

Term Lists

SELECT

Fig. 7. Query translation flow. The generate qualifiers can cause the WHERE list to
be updated, restrict qualifiers can cause both the SELECT and WHERE lists to be
updated, and expression and logical or qualifiers can cause the FILTER list to be
updated.

(a) Daplex query:

for each r in researcher
for each p in employed_on(r)

such that duration(p) > 2
print(title(p),surname(r));

SELECT list:

[?title=var(evar4),?surname=var(evar5)]

WHERE list:

[gn(researcher,obj1,var(uevar1)),
gn(employed_on,

researcher,obj1,var(uevar1),
project,obj2,var(uevar2)),

rs(duration,obj2,var(evar3)),
rs(title,obj2,var(evar4)),
rs(surname,obj1,var(evar5))]

FILTER list:

[ex(?duration,>,2)]

SPARQL query:

SELECT ?title ?surname
WHERE {
?obj1 a unidb:researcher.
?obj1 unidb:employed_on ?obj2.
?obj2 unidb:duration ?duration.
?obj2 unidb:title ?title.
?obj1 unidb:surname ?surname.
FILTER (?duration>2)
}

(b) Daplex query:

for each p in project
such that duration(p) > 2

for each r in employed_on_inv(p)
print(title(p),surname(r));

SELECT list:

[?title=var(evar4),?surname=var(evar5)]

WHERE list:

[gn(project,obj1,var(uevar1)),
rs(duration,obj1,var(evar3)),
gn(employed_on_inv,

project,obj1,var(uevar1),
researcher,obj2,var(uevar2)),

rs(title,obj1,var(evar4)),
rs(surname,obj2,var(evar5))]

FILTER list:

[ex(?duration,>,2)]

SPARQL query:

SELECT ?title ?surname
WHERE {
?obj1 a unidb:project.
?obj1 unidb:duration ?duration.
?obj2 unidb:employed_on ?obj1.
?obj1 unidb:title ?title.
?obj2 unidb:surname ?surname.
FILTER (?duration>2)

}

Fig. 8. Query that makes use of the inverse relationship employed on inv

162 J. Martins et al.

in the WHERE clause. All conditions in the FILTER clause are issued from
such that statements in the Daplex query and correspond to terms derived from
expression and logical_or qualifiers. When translating logical conjunctions
and disjunctions, operator precedence is taken into account.

Handling Relationship Functions and Their Inverses. The queries in
Figure 8 print information about projects lasting more than two years and the
researchers employed on those projects. The Daplex query language supports
the use of inverse relationships. The relationship function employed on in Figure
8(a) is represented in the WHERE list as:

gn(employed_on,researcher,obj1,var(uevar1),project,obj2,var(uevar2))

whereas the query in Figure 8(b) uses the inverse function employed on inv,
which is represented in the WHERE list as:

gn(employed_on_inv,project,obj1,var(uevar1),researcher,obj2,var(uevar2))

Both of these WHERE list elements are translated into SPARQL triple patterns
with the predicate unidb:employed on, a variable representing a researcher as
the subject, and a variable representing a project as the object. Thus, we see
that the notion of inverse function is implicit in the SPARQL language, arising
naturally from the concept of an RDF triple.

4 Discussion

Daplex is a query language that was initially proposed for expressing queries
against a semantic data model — the functional data model [14]. When us-
ing Daplex to express queries against a federated system, the user formulates
queries that are expressed in terms of the entities, attributes and relationships
in the conceptual model, and the organisation and format of data in the fed-
eration’s component databases are not visible at this level. Thus, in the case
of RDF/RDFS collections in a federation, neither the RDF triples nor the tree
structure of an XML serialisation need to be considered by the user when writing
queries. Subsequent translation into a SPARQL query that exposes the under-
lying triple structure is done automatically.

Risch [13] describes a different approach to working with RDF/RDFS in which
RDF/RDFS data are imported into the Amos system, where they can be queried
using the AmosQL language. In contrast, the approach taken here intentionally
aims to make use of existing query processing systems for external data resources
without importing and reformatting data. Other related work includes the func-
tional query language RQL [10], which has been developed for querying RDF.
While the functional design of RQL makes it an attractive language, the avail-
ability of implementations and standardisation efforts for SPARQL make it an
attractive choice for the present work.

A Functional Data Model Approach to Querying RDF/RDFS Data 163

The code generator described here is designed to translate the limited set
of ICode qualifiers described in Section 3.2 into SPARQL. The scope of the
present implementation has, in part, been set by limitations of the SPARQL
language. For example, we cannot currently translate Daplex queries that contain
quantified sub-queries or aggregate functions (count, average, etc.). In order to
overcome this limitation, it would be possible to query metadata in P/FDM and
to use Prolog to post-process query results as needed. However, the SPARQL
language is still under development, and continues to evolve. Future extensions
to SPARQL might increase the range of Daplex queries that can be translated,
or might present better alternatives for translating the queries that are currently
handled by the system.

SPARQL is one of many query languages for web and Semantic Web query-
ing [1,3]. Other languages could be used as the targets for query translation,
possibly avoiding some of the limitations of SPARQL. SPARQL was chosen for
this initial investigation since it is growing in popularity as a Semantic Web
query language, and the similarities between ICode and SPARQL made query
translation relatively straightforward.

5 Conclusions

We have taken a first step towards integrating RDF/RDFS collections with
an existing database federation. The work described here provides a functional
data model view of RDF/RDFS data. As in P/FDM, we are able to represent
subclass/superclass hierarchies in RDF/RDFS, although, unlike with Daplex, it
is not possible to retrieve inferred class instances using SPARQL. This can be
overcome consulting the metadata in P/FDM, finding the depth of the subclass
tree and checking for instances in all levels.

Daplex features that are natively supported by SPARQL were implemented
when translating queries. SPARQL queries show similarities with the ICode that
is used internally within P/FDM, and it is interesting to note that the ICode’s
structure resembles a SPARQL query more closely that it resembles the original
Daplex query. The Daplex query language supports the use of inverse functions,
and the same concept is implicit in a SPARQL triple pattern by reversing the
roles of the subject and object.

A semantic data model, in this case the functional data model, provides an
intuitive way of viewing and querying data in the Semantic Web. We believe
that the work described here represents a useful step towards incorporating
RDF/RDFS data resources within a federated system, enabling queries that
combine data from relational and other databases with data from the Semantic
Web.

Acknowledgements

We are grateful for support from the Swedish Foundation for Strategic Research
and the Chalmers Foundation.

164 J. Martins et al.

References

1. Bailey, J., Bry, F., Furche, T., Schaffert, S.: Web and Semantic Web Query Lan-
guages: A Survey. In: Eisinger, N., Ma�luszyński, J. (eds.) Reasoning Web. LNCS,
vol. 3564, pp. 35–133. Springer, Heidelberg (2005)

2. Embury, S.M., Gray, P.M.D.: A Modular Compiler Architecture for a Data Ma-
nipulation Language. In: Morrison, R., Kennedy, J. (eds.) BNCOD 1996. LNCS,
vol. 1094, pp. 170–188. Springer, Heidelberg (1996)

3. Furche, T., Linse, B., Bry, F., Plexousakis, D., Gottlob, G.: RDF Querying: Lan-
guage Constructs and Evaluation Methods Compared. In: Barahona, P., Bry, F.,
Franconi, E., Henze, N., Sattler, U. (eds.) Reasoning Web 2006. LNCS, vol. 4126,
pp. 1–52. Springer, Heidelberg (2006)

4. Kemp, G.J.L., Angelopoulos, N., Gray, P.M.D.: Architecture of a Mediator for a
Bioinformatics Database Federation. IEEE Transactions on Information Technol-
ogy in Biomedicine 6, 116–122 (2002)

5. Gray, P.M.D., Embury, S.M., Hui, K.Y., Kemp, G.J.L.: The Evolving Role of Con-
straints in the Functional Data Model. J. Intelligent Information Systems 12, 113–
137 (1999)

6. Gray, P.M.D., Hui, K.Y., Preece, A.D.: An Expressive Constraint Language for
Semantic Web Applications. In: Preece, A., O’Leary, D. (eds.) E-Business and the
Intelligent Web: Papers from the IJCAI-01 Workshop, pp. 46–53. AAAI Press,
Menlo Park (2001)

7. Gray, P.M.D., Kerschberg, L., King, P.J.H., Poulovassilis, A. (eds.): The Functional
Approach to Data Management: Modeling, Analyzing, and Integrating Heteroge-
neous Data. Springer, Heidelberg (2004)

8. Gray, P.M.D., Kulkarni, K.G., Paton, N.W.: Object-Oriented Databases: a Seman-
tic Data Model Approach. Prentice Hall Series in Computer Science. Prentice-Hall,
Englewood Cliffs (1992)

9. Karjalainen, M.: A System for Integrating Heterogeneous, Autonomous Databases.
Licentiate thesis, Chalmers University of Technology (2006)

10. Karvounarakis, G., Magkanaraki, A., Alexaki, S., Christophides, V., Plexousakis,
D., Scholl, M., Tolle, K.: RQL: A Functional Query Language for RDF. In: Gray,
P.M.D., Kerschberg, L., King, P.J.H., Poulovassilis, A. (eds.) The Functional Ap-
proach to Data Management: Modeling, Analyzing, and Integrating Heterogeneous
Data, pp. 435–465. Springer, Heidelberg (2004)

11. Kemp, G.J.L., Angelopoulos, N., Gray, P.M.D.: A Schema-based Approach to
Building a Bioinformatics Database Federation. In: Proceedings IEEE Interna-
tional Symposium on Bio-Informatics and Biomedical Engineering, pp. 13–20.
IEEE Computer Society Press, Los Alamitos (2000)

12. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C can-
didate recommendation, W3C (June 2007),
http://www.w3.org/TR/2007/CR-rdf-sparql-query-20070614/

13. Risch, T.: Functional Queries to Wrapped Educational Semantic Web Meta-Data.
In: Gray, P.M.D., Kerschberg, L., King, P.J.H., Poulovassilis, A. (eds.) The Func-
tional Approach to Data Management: Modeling, Analyzing, and Integrating Het-
erogeneous Data, pp. 466–477. Springer, Heidelberg (2004)

14. Shipman, D.W.: The Functional Data Model and the Data Language DAPLEX.
ACM Trans. Database Syst. 6(1), 140–173 (1981)

http://www.w3.org/TR/2007/CR-rdf-sparql-query-20070614/

Ranking for Approximated XQuery Full-Text

Queries

Giacomo Buratti1 and Danilo Montesi2

1 Department of Mathematics and Computer Science, University of Camerino,
Via Madonna delle Carceri 9, Camerino, Italy

giacomo.buratti@unicam.it
2 Department of Computer Science, University of Bologna,

Mura Anteo Zamboni 7, Bologna, Italy
danilo.montesi@unibo.it

Abstract. Treating structural conditions included in an XQuery Full-
Text expression as desiderata rather than mandatory constraints could
be beneficial for better answering user’s informational needs. Using an
approximated semantics requires however a mechanism for calculating a
score for each resulting tree, and an algorithm for efficiently finding the
best results. Both these issues are explored in this paper. We present
algorithms for query evaluation that uses a threshold approach in order
to improve performance; the algorithms rely on some properties of the
functions used to calculate the score. Moreover, we propose a method,
based on the new concepts of Path Edit Distance and Comparison Satis-
faction Ratio, for calculating the structural score of a tree that partially
satisfies conditions over tree structure and element values.

Keywords: XQuery Full-Text, Approximation, Score, Ranking,
Optimization.

1 Introduction

XQuery Full-Text [1] is a recent W3C proposed query language that extends
XQuery with full-text operators. It is an answer to the necessity of integrating
semi-structured and unstructured data into a more general framework, towards
the so-called Structured Information Retrieval which is the area of investiga-
tion of many research works in the last years [2]. XQuery Full-Text, however,
treats basic conditions (i.e. navigational expressions and constraints on value
of elements or attributes) and full-text conditions in a very different way. In
fact, while full-text conditions can have a boolean semantics (e.g. where $b
ftcontains "cat" means that $b must contain the word cat) or a ranked
retrieval semantics (e.g. let score $s := $b ftcontains "dog" means that
the presence of the word dog is not mandatory; it is rather the way to calcu-
late a score for each element in $b, which could later be used for ordering the
result), basic conditions are always treated as mandatory: in order to be re-
trieved, an element must be reachable by exactly following the specified path

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 165–176, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

166 G. Buratti and D. Montesi

expression, and all the conditions on values must be satisfied (e.g. for $b in
doc("bib.xml")/books/book[/year>1995]).

The flexibility of the schema, one of the main characteristics of the semi-
structured data model, poses interesting questions for what concerns answering
queries that impose structural constraints on the XML fragments to retrieve;
it could be the case that such constraints are satisfied by a very small part of
input documents. Nevertheless, some fragments could be relevant to users, even
if they do not closely respect some structure constraints.

For example, consider the XML document shown graphically in Fig. 1. Then
the path expression /bib/book/author returns only those authors that are the
single authors of at least one book, while the user need is probably to find all book
authors; the less restrictive path expression /bib/book//author would include
also co-authors in the result. Analogously, the path expression /bib/book/title
finds all the book titles, but ignores paper titles; however some semantic relation-
ship exists between the words book and paper, because both are hyponyms of pub-
lication. Moreover, the path expression //paper[//section/title ftcontains
"INEX"] returns papers that include in a section title the word INEX ; the less
restrictive expression //paper[//section ftcontains "INEX"] would return
also papers that instead include the word in a section content. Finally, the
path expression /bib/book[/price < 39] could discard the vast majority of
the books (in the document shown in Fig. 1 no book satisfies the constraint);
consequently, the user could also be interested in books having price 39, or even
in books having a price not much greater than 39.

This issue has been already investigated in [3]. The idea proposed there is to
consider the searched path expressions and the specified conditions on values as

bib

book

title

author

Year = “1994”

publisher price

“TCP-IP
Illustrated”

last first

“Stevens” “W.”

“Addison-
Wesley”

65.95

book

title

author

Year = “2000”

publisher price

“Data on
the Web”

last first

“Abiteboul” “Serge”

“Morgan Kaufmann
Publishers”

39.95

author

last first

“Buneman” “Peter”

author

last first

“Suciu” “Dan”

authors

paper

title

author

Year = “2000”

abstract sections

“FleXPath:
Flexible

Structure
and Full-Text
Querying for

XML.”

last first

“Amer-
Yahia”

“S.”

“Querying XML data is a
well-explored topic…”

“...Consider querying
documents in the IEEE INEX…”

author

last first

“Lakshmanan” “L.V.S.”

authors

section

“Introduction”

title content

section

...

Fig. 1. Graphical representation of an XML document

Ranking for Approximated XQuery Full-Text Queries 167

desirable properties to enjoy for an element to be returned, instead of consider-
ing them as mandatory constraints. Queries are written as algebraic expression,
where approximated algebraic operators are used and an outer Top-k or Thresh-
old operator selects the best answers and presents them in score order. The
algebraic framework developed in [3] is briefly reviewed in Sect. 3. This paper
focuses instead on two interconnected issues, which are central for implement-
ing an approximated XML system: 1) how to calculate the score to assign to
an approximated answer, i.e. an element that does not perfectly respect query
conditions? and 2) how to efficiently return the best answers to a query?

Section 4 deals with efficient query evaluation. We first present a naive evalu-
ation algorithm and explain why it suffers serious performance problems. Then
we define two useful properties of scoring functions and show that, if the func-
tions we use enjoy these properties, query evaluation can be carried out using
better performing algorithms that follow a threshold approach.

Though the algorithms presented are parametric with respect to the particular
scoring function used, in Sect. 5 we propose a scoring model for non full-text
conditions. We define the concepts of Path Edit Distance, a measure of the
similarity between two path expressions, and Comparison Satisfaction Ratio, a
measure of the satisfaction of a comparison expression. We do not deal with
full-text score calculation, which is supposed to be done using some of the well
known IR-like techniques.

Finally, Sect. 6 concludes our work by reviewing the main results achieved
and outlining future research directions.

2 Related Work

Historically, Information Retrieval was born as a subject dealing with unstruc-
tured documents. The adaptation of its classical concepts to the management of
semi-structured documents requires a considerable research effort, and many pa-
pers have been written on this issue. Particularly relevant is INEX [2] (INitiative
for the Evaluation of XML retrieval), a series of conferences actively working on
the so-called Structured Information Retrieval (SIR), i.e. Information Retrieval
over XML repositories. Participants to this initiative present SIR systems which
are able to answer to Content and Structure (CAS) queries, i.e. queries that
contain constraints on both the content and the structure of a document. A
question arises regarding the way to interpret such queries: should conditions be
interpreted strictly or vaguely? Moreover, should it be some difference between
the interpretation of conditions on target elements, i.e. elements to be returned,
and those on support elements, i.e. paths followed to reach the target elements?
INEX does not dictate a choice; it rather proposes [4] different possible inter-
pretations. Among them, we decide to use the Strict-Vague (SVCAS) semantics.
This means that structure conditions concerning internal steps are interpreted
as vague constraints, while structure conditions concerning target nodes are in-
terpreted as semi-strict constraints, in the sense that we allow (with a penalty)
only a limited number of relaxation on conditions over target nodes.

168 G. Buratti and D. Montesi

Defining a scoring method for approximated query answers is the focus of [5]
and [6]. These papers propose an accurate scoring method, twig scoring, and two
approximations of it: path scoring and binary scoring. Twig scoring is inspired
by traditional tf ∗idf measure used in Information Retrieval [7].

TopX, an algorithm for processing queries expressed using the NEXI [8] query
language, is presented in [9]. The algorithm returns the top-k results by com-
bining a structure score, calculated as the ratio between the number of satisfied
conditions and the total number of conditions, and a content score, calculated
using a variation of classical tf ∗idf measure. The focus of the paper is on ef-
ficiently computing answers; a threshold algorithm makes probabilistic pruning
of candidates and avoid as much as possible random access to indexes. With
respect to TopX, our proposal does not use probabilistic pruning; however, we
pay more attention to structural score calculation by carefully calculating the
level of satisfaction of structural conditions.

3 The Approximated Algebraic Framework

Let us now review the algebraic framework presented in [3]. As already said,
approximate queries are represented through algebraic expressions. Algebraic
operators take as input a forest, i.e. a list of trees, and return a forest. Each out-
put tree has a global score which is the combination of two sub-scores: a structural
score and a full-text score. Each query is of the form OR(On(On−1(· · · (O1(F))))),
where: F is the input forest; Oi is an approximated operator that somehow ma-
nipulates the input forest; OR is a ranking operator that extracts from the input
forest the trees with highest scores and returns them in descending score order.

The algebra is equipped with four approximated operators: projection, selec-
tion, full-text selection, full-text score assignment.

Approximated projection π�
λ(F) returns subtrees of the input trees that can

be reached by following a (more or less precise) approximation of the path ex-
pression λ. For example the algebraic expression π�

/bib/book(“bib.xml”), where
bib.xml is the XML document shown in Fig. 1, would probably return a forest
whose highest score trees are the two subtrees rooted at the two book elements
(no approximation, so maximum score) and the subtree rooted at paper.

Approximated selection σ�
λ[γ](F) assigns to each input tree a structural score

reflecting: 1) the availability of a subtree reachable by following an approxi-
mation of λ; 2) the degree to which that subtree satisfies the selection condi-
tion γ. For example the expression σ�

/book[/author/last.v=“Amer−Yahia” OR /price.v<60]

(π�
/bib/book(“bib.xml”)) should assign a non-zero score not only to the book Data

on the Web, which is an exact answer, but also to: 1) the book TCP-IP Illus-
trated, which slightly fails to respect the price constraint; 2) the paper, which
slightly fails to respect document structure and element names constraints.

Approximated full-text selection ς�
λ[γ](F) searches one or more words or

phrases into the content of a subtree reachable by following an approximation of

Ranking for Approximated XQuery Full-Text Queries 169

λ. If the words are found, the full-text score is set to 1, otherwise it is set to 0;
the structural score, as usual, represents the degree of approximation applied to
λ. For example the algebraic expression ς�

/book/title[”INEX”](π/bib/book(“bib.xml”))
should assign a full-text score of 1 to the paper about FleXPath, because it
contains the searched word into the subtree reachable by following the approx-
imated path expression /bib/paper; in this case the approximation enables to:
1) reach also paper elements and 2) broaden the search scope from the content
of title to the content of paper (that includes the content of title).

While full-text selection performs a full-text search using a boolean model (a
tree either satisfies the selection condition or it does not satisfy the condition
at all), full-text score assignment ξλ[γ] fF

(F) assigns to each tree a full-text
score (calculated by the function fF) between 0 and 1. As in full-text selection,
the structural score represents the degree of approximation applied of λ.

Usage of approximated operators is motivated by the consideration that a
strict interpretation of conditions imposed by the user query could discard trees
which could be of interest for the user. However a way to filter results (retaining
only those that best match the user needs) is needed, otherwise the user would
be overwhelmed by a huge amount of answers. This is the reason why queries
always have an outer Top-K selection � or Threshold selection ω operator.
They return, respectively, the k trees with highest global scores and those trees
whose global score is higher than a defined threshold τ ; in both cases trees are
returned in descending score order.

4 Query Evaluation

Writing a naive algorithm to evaluate a query is straightforward. First of all the
algebraic operators are executed (using the operator-specific algorithms) from
the inner one O1 to the outer one On, passing Oi’s output forest as input to Oi+1;
then, according to the ranking operator’s semantics, the trees with lowest scores
are pruned; finally the resulting forest is ordered by descending value of combined
score. This algorithm suffers however of an evident performance problem: the size
of intermediate results tends to increase along query evaluation, until the ranking
operator is executed.

In order to understand this point, let us analyze the behavior of approximated
projection. One could expect that it returns exact answers plus reasonable ap-
proximated answers (e.g. paper elements when looking for book elements); ac-
tually it returns a forest containing a tree for each element in the input forest.
In fact, any original path expression can be relaxed into //β, where β is any
element name. Hence approximated projection transforms a forest containing n
elements into a forest containing n trees and the following number of elements:

– in the best case n, when each input tree is composed by only one element,
as shown in Fig. 2(a);

– in the worst case n(n + 1)/2, when each input tree is actually a list, like the
one shown in Fig. 2(b) (the result is the input tree itself, plus those shown
in Fig. 2(c));

170 G. Buratti and D. Montesi

Fig. 2. Examples of approximated projection

– in the average case n logk n, when each non-leaf element has k child elements,
as in the tree shown in Fig. 2(d) (the result is the input tree itself, plus those
shown in Fig. 2(e)).

Therefore any projection multiplies, in the average case, by logk n the number
of elements, while any other approximated operator leaves it unchanged: selec-
tion, full-text selection and full-text score assignment does not discard any input
tree, they just assign structural and full-text scores to the input trees.

4.1 A Threshold Approach

The naive algorithm did not take into account the fact that the ranking opera-
tor is supposed to cut off most of the trees. In order to take advantage of this
characteristic of the queries, we must reason about the scoring function we use
and the way the score is calculated. According to the semantics illustrated in
Sect. 3, we can assume that each approximated operator calculates a local struc-
tural score SSL (using a function fS) and a local full-text score FSL (using a
function fF), reflecting the level of satisfaction of its own structural / full-text
constraints; such scores are then combined (using a function fC) with the struc-
tural / full-text score returned by inner operators to form the current structural
score SS and the current full-text FS; SS and FS are then combined (using a
function fG) each other to form the current global score S. The process goes on
until the outermost operator is executed and the final global score is calculated;
then Top-K / Threshold returns the query answer.

Suppose the ranking operator is Threshold. After executing m of the n query
steps, we know that a tree will surely be discarded by Threshold if 1) the current
global score of the tree is lower than τ and 2) we are sure that, after executing
the remaining n−m operators, the global score will not raise. In order to satisfy
the second condition, the only things we need are that 1) the function fC that
calculates current structural / full-text score is a left decreasing function; 2) the
function fG that calculates the current global score is a monotonic function.

Definition 1. Let f : R × R → R be a function. f is a Left Decreasing
Function if ∀x ∈ R, y ∈ R: f(x, y) ≤ x. f is a Monotonic Function if
∀(x1, y1) ∈ R × R, (x2, y2) ∈ R × R, x1 ≤ x2, y1 ≤ y2: f(x1, y1) ≤ f(x2, y2).

Being fC a left decreasing function, SS and FS tend to decrease during the
query evaluation: fC(SS, SSL) ≤ SS and fC(FS, FSL) ≤ FS. Then, if fG is

Ranking for Approximated XQuery Full-Text Queries 171

monotonic, current global score S tends to decrease as well. Therefore, a Thresh-
old query ωfS ,fG,τ (On(On−1(· · · (O1(F))))) can be evaluated as follows. Initially
both SS and FS are set to 1, and F1 = O1(F) is evaluated; the algorithm
implementing the operator O1 calculates, for each tree to return, SSL (using
structural scoring function fS) and FSL (using some full-text scoring function).
Then, for each returned tree, the algorithm implementing Threshold calculates:
SS = fC(SS, SSL); FS = fC(FS, FSL); S = fG(SS, FS). Then each tree whose
current combined score S < τ is removed from F1. Now the query evaluation
goes on evaluating F2 = O2(F1), calculating scores and discarding trees as be-
fore. After On is executed the resulting trees are ordered by descending S value.

It should be noted that the limitation imposed over the choice of fC and fG

functions is not an issue. In fact a natural choice for fC is multiplication (i.e.
SS = SS ∗ SSL and FS = FS ∗ FSL), and multiplication of reals in the range
[0, 1] is a left decreasing function (xy ≤ x, being xy = x when y = 1). Similarly
a natural choice for fC is weighted sum (i.e. S = θ ∗ SS + (1 − θ) ∗ FS, where
0 ≤ θ ≤ 1), which is a monotonic function. Though not strictly necessary for the
threshold approach to work, a good fC should be a continuous function of the
weight θ, as discussed in [10].

The advantage of this Threshold evaluation method is that the size of in-
termediate results decreases, because a (hopefully large) part of the resulting
trees are discarded. Note that, in order to achieve this result, we do not make
any assumption about local scores calculation functions; we just require some
common-sense properties: 1) an exact answer must have score 1; 2) an approxi-
mated answer must have a score 0 ≤ s < 1; 3) non full-text operators (projection
and selection), are supposed to assign a local full-text score of 1 to each resulting
tree.

The performance gain obtained using this approach depends on the ratio of
discarded trees, which could be quite high, especially on the projection steps.
As an example, consider the XML document in Fig. 1 and a query whose in-
ner operator is π/bib/book(“bib.xml”). The input tree contains 39 elements, so
approximated projection returns a forest containing 39 trees; the threshold ap-
proach would probably retains just the three trees rooted at book and paper
elements, thus reaching a 92% discard ratio.

Let us now consider Top-K queries. This time we do not have a defined thresh-
old τ that allows to discard trees with a lower score. In order to use a threshold
approach also for Top-K queries we must change the way query is evaluated:
instead of using a set-oriented evaluation strategy, in which each operator is ex-
ecuted over the entire input forest, we follow a mixed evaluation strategy. This
strategy tends, in a first phase, to fill the temporary resulting forest with the
first k results, then to gradually replace trees with lower scores with trees with
higher scores. Once the resulting forest contains k trees the threshold approach
starts to work: if the (presently found) k-th score is higher than the score of a tree
in an intermediate result, that tree can be safely discarded without completing
query evaluation.

172 G. Buratti and D. Montesi

The performance is highly influenced by the order in which trees are evalu-
ated. The optimal situation occurs when the first k trees that are included in the
(temporary) resulting forest are also those which turn out to have the highest
scores; in this case, in fact, all the other trees are immediately discarded. Ac-
cording to this consideration, it would be worthwhile thinking of a pre-processing
step which tries to locate trees having high chances to be included in the Top-K
result and process them first.

5 Structural Score Calculation

In Sect. 4 we have defined the query evaluation strategy to follow. The algorithms
rely on left decreasingness of fC and on monotonicity of fG, while no assump-
tion is necessary about local scores calculation. In this subsection we present a
possible way to calculate structural scores in the presence of relaxations on both
path expressions and comparison predicates.

5.1 Path Relaxations

Let us consider a subtree T ′ of an input tree T , reachable from root(T) by fol-
lowing a path λ′, that is returned by the approximated projection π�

λ(F). In
order to assign a structural score to T ′, we need a way to measure the sim-
ilarity between λ′ and the searched path λ. For example, suppose we are ex-
ecuting π�

/bib/book/author over the XML document in Fig. 1. Which structural
score should be assigned to the subtree rooted at author representing Serge
Abiteboul? In other words, which is the similarity between the searched path
/bib/book/author and the path /bib/book/authors/author? In order to an-
swer this question, we define a novel similarity measure, called Path Edit Distance
(PED).

Let us first introduce the concept of Path Transformation System, which is
the tool that allows to transform a path expression into another one and to
calculate the transformation cost. It is defined as a set of transformation types,
each one having a cost. The Path Transformation System we propose includes
three transformation types: Insert, Delete, and Substitute.

Insert adds a step into λ. For example /bib/book/author can be transformed
into /bib/book/authors/author by inserting the step /authors just before the
step /author. The cost of an Insert is: 1 when inserting a step just before another
step which has a child axis, because such a transformation extends the result
space (e.g. inserting /authors before /author in /bib/book/author); 0 when
inserting a step just before another step which has a descendant axis, because
such a transformation does not extend the result space (e.g. inserting /authors
before //author in /bib/book//author).

Delete removes a step from λ. For example /bib/book/authors/author can
be transformed into /bib/book/author by deleting the step /authors. The cost
of a Delete is always 1, because in any case an application of this transformation
potentially includes new elements in the result.

Ranking for Approximated XQuery Full-Text Queries 173

Substitute replaces a name β with β′. For example /bib/book can be trans-
formed into /bib/paper by substituting book with paper. The cost of a Substi-
tute is 1−x, where x is the similarity between the approximated and the original
element name; therefore the cost ranges from 0 (β is equal to β′) to 1 (β and β′

are completely unrelated). It could seem strange that the cost of a substitution
is not equal to the cost of an insertion followed by a deletion. However we defined
this transformation in terms of similarity, making it a first class citizen, while in
classical string edit distance it can be viewed as a derived one.

These basic transformations can be composed in order to operate more com-
plex transformations. In general there are more than one strategy (i.e. sequence
of transformations) that can be followed for transforming a path expression λ
into λ′, and each of those sequences has a cost, given by the sum of the costs of
the included basic transformations. The Path Edit Distance between λ and λ′ is
defined as the cost of the cheapest transformations sequence from λ to λ′.

Definition 2 (Path Edit Distance). Let λ and λ′ be two path expressions.
Let PTS be a Path Transformation System and let Oλ,λ′,PTS be the set of trans-
formations sequences from λ to λ′. The Path Edit Distance PED(λ, λ′, PTS) is
defined as min{cost(oi) | oi ∈ Oλ,λ′,PTS}.

PED clearly resembles classical String Edit Distance [11], with a difference: while
in String Edit Distance we have a boolean judgement about equality between
two letters, in PED we associate to each pair of element names (the equivalent
of a letter in String Edit Distance) a score value representing the similarity
between the names. A similarity of 1 means that the two names are equal, while
a similarity of 0 means that the two names are completely unrelated.

The algorithm that calculates PED is a straightforward adaptation of the
classical bottom-up dynamic programming algorithm for computing string edit
distance; there is however a point to notice. We must recall that queries must
be evaluated using a SVCAS semantics. The PED between a path expression
α1β1α2β2 · · ·αnβn (where αi is either ‘/’ or ‘//’, and βi is an element name)
specified in the query and a path expression /β′

1/β′
2 · · · /β′

m from the root of a
tree to an element (only child axes can be found in a real path between two
elements) is consequently calculated as the sum of: 1) the minimum distance
between α1β1α2β2 · · ·αn−1βn−1 and /β′

1/β′
2 · · · /β′

m−1; 2) 1 minus the similarity
between βn and β′

m.

function PED(query pattern a[1]b[1]a[2]b[2]...a[n]b[n],
element pattern /c[1]/c[2].../c[m]
for i=0 to n-1

d[i,0]:=i;
for i=0 to m-1

if a[1]=‘/’ then d[0,i]:=i else d[0,i]:=0;
for i=1 to n-1

for j=1 to m-1
if a[i+1]=‘/’ then InsCost:=1 else InsCost:=0;
d[i,j] := min(d[i,j-1]+InsCost, d[i-1,j]+1,

174 G. Buratti and D. Montesi

d[i-1,j-1]+(1-Similarity(b[i],c[j]));
return d[n-1,m-1] + (1 - Similarity(b[n], c[m]));

The algorithm takes as input the two path expressions (note that a[i] corre-
sponds to αi, b[i] to βi, c[i] to β′

i) and involves the use of an n × m matrix d,
where n and m are the lengths of the two path expressions. The invariant main-
tained throughout the algorithm is that we can transform the initial segment
a[1]b[1] . . . a[i]b[i] into /c[1] . . . /c[j] using a minimum of d[i, j] operations. At the
end, the bottom-right element of the matrix contains the the minimum distance
between α1β1α2β2 · · ·αn−1βn−1 and /β′

1/β′
2 · · · /β′

m−1.
For example, consider the path expressions λ = /bib/book//author and λ′ =

/bib/paper/authors/paperauthor. Suppose that Similarity(book, paper)= 0.7,
Similarity(author, paperauthor) = 0.9, while the similarity between any other
element name is 0.05. The function PED returns 0.4. In fact λ can be transformed
into λ′ by: 1) substituting book with paper (cost 0.3); 2) inserting authors before
//author (cost 0); 3) substituting author with paperauthor (cost 0.1).

The concept of Path Edit Distance is well suited for representing the structural
score of a tree returned by an approximated projection. However we need a score
value between 0 and 1, so we should divide PED ’s output by the maximum
possible PED value, which is max{|λ|, |λ′|}, where |λ| is the number of steps in
λ. In fact it is always possible to transform λ into any λ′ by: 1) substituting any
βi in λ with β′

i in λ′ (in the worst case the cost is 1 for each substitution); 2)
inserting the remaining steps of λ′ in λ or deleting the remaining steps in λ.

5.2 Comparison Relaxations

We have seen that comparison predicates can be subject to relaxation. For ex-
ample the predicate price <= 50 can be relaxed into price <= 60. In this case,
which structural score should be assigned to a book whose price is 59?

First of all, the scoring function should enjoy a common-sense property: the
more a value is close to the searched value, the more the score should be high;
in the previous example, if a book costs 51 and another one costs 58, the first
one should have an higher score. Moreover, scoring should take into account the
magnitude of the values; for example, if books have prices varying from 10 to
1000, a difference of 8 between searched price and found price is more acceptable
than a difference of 0.1 in a domain having values varying from 0 to 1.

Taking into account these consideration, let us informally define the concept
of Comparison Satisfaction Ratio (CSR). If a condition is satisfied, CSR is obvi-
ously equal to 1. If a condition is not satisfied CSR is 1 minus the ratio between
1) the difference between the found value and the searched value; 2) the maxi-
mum difference that can be found in the input set of values. The searched value
is the borderline value that satisfies the condition; for example if the condition
is x ≤ 50 the borderline is 50, if the condition is x ≥ 80 the borderline is 80.

Now suppose that the original selection predicate is /book[/price.v <= 50]
and that we are considering an element named totalprice. In this case the
input set is the set of elements named price or totalprice in the input forest. If

Ranking for Approximated XQuery Full-Text Queries 175

the highest value in the input set is 100 and the value of the totalprice element
is 60, then CSR is 1 − (60 − 50)/(100− 50) = 0.8.

If the values to compare are two strings and the comparison operator is =,
CSR is instead the similarity between the two strings, as usual calculated using
an ontology. An evaluation function must be defined for each kind of operator
and values; for the sake of simplicity we do not discuss each possible case.

5.3 Putting Things Together

We have already noticed that the Path Edit Distance can be used for calculating
the structural score of trees returned by approximated projection. Let us now
discuss the other approximated operators.

The simplest form of selection predicate is λ[pθx], where λ is a path expression,
p is an element property (typically its value), θ is a comparison operator, and x
is a constant. The system must find, for each input tree T , a subtree reachable
by following an approximation of λ that satisfies an approximation of pθx. If F
is the set of subtrees reachable by following an approximation of λ, a natural
choice is to set the structural score of T to the maximum value among those
calculated by combining (e.g. multiplying) the normalized PED between λ and
λ′, where λ′ is the path from the root of the original tree to the root of the
subtree we are considering, and the CSR of the predicate pθx.

In the case of full-text selection, where the predicate is of the form λ[γ], we
must check, for each input tree T , if there is some subtree that satisfies the
full-text condition γ. If this is the case, the full-text score of T is set to 1, and
the structural score is set to the maximum normalized PED among those of the
subtrees that satisfies γ. In no subtree satisfies γ, the full-text score of T is set
to 0, and the structural score is set to the maximum normalized PED value.

Finally, in the case of full-text score assignment, the full-text score assigned
to each tree must range from 0 to 1, according to the level of satisfaction of
the full-text condition. As in the case of full-text selection any subtree of an
input tree T is analyzed, and T ’s full-text score is set to the maximum value
of its subtree’s full-text score, while T ’s structural score is set to the maximum
structural score value among those of the subtrees with maximum full-text score.

6 Conclusions and Future Work

Using an approximated semantics in answering XQuery Full-Text queries may
allow to best satisfy the user needs, as many presented examples suggest. How-
ever dealing with approximation requires a good scoring method and efficient
algorithms; in this paper we have tackled these two issues.

The algorithms that evaluate a query returning the best k results or the
results with a sufficiently high score rely on the assumptions that: 1) the function
that calculates current structural / full-text scores enjoys the left decreasingness
property; 2) the function that combines these scores to form the current global
score enjoys the monotonicity property. These assumptions permits to follow a

176 G. Buratti and D. Montesi

threshold approach to the query evaluation, i.e. to early discard some possible
answer. We have also made some examples of valuable scoring functions, though
the algorithms developed do not depend on a particular scoring system, thus
leaving the freedom to make different choices. In particular we have defined the
concepts of path edit distance and comparison satisfaction ratio.

The most obvious future research direction is the implementation of a working
prototype of XML approximated query engine, based on the algebraic operators
presented in this paper. Such a prototype is needed in order to test the efficiency
of the threshold approach to query evaluation, as well as the effectiveness of the
proposed score calculation functions. The issue of query optimization also in-
volves the availability of ad-hoc index structures. Choosing a valuable indexing
method is not a trivial issue, especially because those presented in literature
are only suitable for exact query evaluation, so they should be re-thought for
dealing with approximation. Finally we plan to support a more significant frag-
ment of XQuery Full-Text. To this aim approximated algebraic operators should
be supplemented with other operators, like the ones presented in [12], possibly
augmented with some sort of approximated behavior.

References

1. W3C: XQuery 1.0 and XPath 2.0 Full-Text, W3C Working Draft (2006),
http://www.w3.org/TR/xquery-full-text/

2. INEX: INitiative for the Evaluation of XML Retrieval (2007),
http://inex.is.informatik.uni-duisburg.de/

3. Buratti, G., Montesi, D.: An Approximation-Aware Algebra for XML Full-Text
Queries. In: Proceedings of ICSOFT 2007 (July 2007)

4. Trotman, A., Lalmas, M.: The Interpretation of CAS. In: Fuhr, N., Lalmas, M.,
Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp. 58–71. Springer,
Heidelberg (2006)

5. Amer-Yahia, S., Koudas, N., Marian, A., Srivastava, D., Toman, D.: Structure and
Content Scoring for XML. In: Proceedings of VLDB 2005, pp. 361–372 (2005)

6. Marian, A., Amer-Yahia, S., Koudas, N., Srivastava, D.: Adaptive Processing of
Top-K Queries in XML. In: Proceedings of ICDE 2005, pp. 162–173 (2005)

7. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley,
Reading (1999)

8. Trotman, A., Sigurbjörnsson, B.: Narrowed Extended XPath I (NEXI). In: Fuhr,
N., Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493, pp.
16–40. Springer, Heidelberg (2005)

9. Theobald, M., Schenkel, R., Weikum, G.: An Efficient and Versatile Query Engine
for TopX Search. In: Proceedings of VLDB 2005, pp. 625–636 (2005)

10. Fagin, R., Wimmers, E.L.: A Formula for Incorporating Weights into Scoring Rules.
Theoretical Computer Science 239(2), 309–338 (2000)

11. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady 10(8), 707–710 (1966)

12. Buratti, G.: A Model and an Algebra for Semi-Structured and Full-Text Queries
(Ph.D. Thesis). Technical Report UBLCS-2007-03, University of Bologna (2007)

http://www.w3.org/TR/xquery-full-text/
http://inex.is.informatik.uni-duisburg.de/

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 177–180, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Role Based Access to Support Collaboration in
Healthcare

Alysia Skilton1, W. Alex Gray1, Omnia Allam1, Dave Morry2,
and Hazel Bailey2

1 Cardiff School of Computer Science, Cardiff University, Queen's Buildings, 5 The Parade,
Roath, Cardiff CF24 3AA, UK

2 Velindre Hospital, Whitchurch, Cardiff, CF14 2TL, UK
A.Skilton@cs.cf.ac.uk

Abstract. Traditional healthcare information systems have been developed and
organized as silos. However, recent changes in healthcare delivery models have
resulted in the widespread creation of MultiDisciplinary care Teams (MDTs).
These teams consist of practitioners with a variety of specialties often sited at
different locations [1, 2]. This collaborative approach has led to a significant
shift in information needs. However, existing information systems are not de-
signed to support this new level of collaboration and technical support for prac-
titioners has not kept pace with changing needs [3]. As every case is different,
one of the many information challenges of this new paradigm is that of provid-
ing appropriate views to practitioners based on the unique needs of the patient
as well as the practitioner’s role with that patient. This paper will describe an
individualized role based approach to data views for healthcare providers using
an independent system to access data stored in existing healthcare information
systems.

Keywords. virtual organization, role based access, multidisciplinary care team.

1 Introduction

The traditional healthcare delivery model has been for practitioners with different
specialties to work independently [4]. In keeping with this, legacy healthcare informa-
tion systems are typically discipline organised silos [3]. In recent years, however,
there has been an ongoing shift towards interdisciplinary collaboration in patient care
resulting in the widespread development of MultiDisciplinary care Teams (MDTs)
which consist of practitioners from a variety of specialties often working from differ-
ent locations [1, 2]. This shift in working practice has led to significant changes in
information needs and an increased need for information sharing among practitioners
which has given rise to a variety of challenges with regard to appropriate and timely
provision of information [5, 6]. In particular, exchange of information between practi-
tioners at different sites is rarely handled by existing information systems, resulting in
delays in information transfer or even a complete inability to access relevant informa-
tion about a patient’s condition. Additionally, practitioners with different specialties

178 A. Skilton et al.

will have varied information needs and these will again vary depending on the pa-
tient’s condition. Medico-legal as well as data protection issues further require that
information access be reasonable and traceable.

This paper will focus on the challenge of providing appropriate and flexible views
to support collaboration between team members. The patient-centric nature of MDTs
means that information from a variety of sources should be brought together and or-
ganized by patient, rather than by condition. Further, each member of the MDT will
have different information requirements based on team role and patient condition.
Because the move towards a collaborative approach is recent and ongoing, exact in-
formation requirements are not yet fully determined and are expected to continue
changing as working practices are established and standardized. This paper will de-
scribe one approach to providing MDT members with flexible and appropriate access
to patient records.

2 VOICCE Proposal

A virtual organisation (VO) approach that utilises existing healthcare information
systems in a modified federation architecture is proposed [7]. The primary focus of
the VOICCE (Virtual Organisation access to Information Sources and Services in a
Collaborative Cancer care Environment) system is coordination of information and
systems to provide appropriate, flexible, and comprehensive patient-centric informa-
tion access to MDT members. This is achieved through applying a VO structure for
existing MDTs and determining access to appropriate patient-focused information
based on diagnosis, the nature or emphasis of the MDT, the member’s team role, and
the treatment stage. MDTs vary widely in structure and working style so the system
must be flexible enough to support these variations.

The system consists of a management database, a software component, and in-
cluded legacy databases. The management database stores access information- user,
patient, and site information as well as associations between practitioners, patients,
and care teams. The software component accesses the management database to de-
termine information requirements and sources, retrieves required information from
constituent systems, and displays the information to the user. A more complete de-
scription of the proposed system structure can be found in [7].

In addition to individual legacy healthcare information systems, the VOICCE pro-
ject will be compatible with other systems including ISCO/CaNISC, the all Wales
cancer information system [8] and the Welsh Clinical Portal [9]. Further stages of the
project will also incorporate ongoing related research in our research group including
an integrated care pathway workflow and provision of specific information to patients
based on their individual diagnoses [10, 11].

3 Role Based Access

To increase flexibility of views we propose the inclusion of a small, local database at
each site which will keep track of which items should be displayed for each role. This
should allow significant flexibility in determining what information is provided while
also allowing the system to be easily evolved when information needs change or new
functionality is provided.

 Role Based Access to Support Collaboration in Healthcare 179

To achieve the desired flexibility the new database will associate interface compo-
nents with specific roles. Interface components (windows, buttons, etc) will be classi-
fied as mandatory (always displayed) or optional. Mandatory items may be screens
that are available to all users or items which are always displayed on a particular
screen (whether or not the screen itself is always available). Optional items must then
be assigned identifiers which can be associated with relevant team roles/views as
illustrated in figure 1:

Role ComponentRoleObjects
views displays

Fig. 1. ER diagram for proposed view definition database

Introducing this database will increase the adaptability and evolvability of the
VOICCE system in several ways. First, it allows new functionality to be added to the
system with minimal hassle. Rather than rebuilding each view, new services can be
added by including a new class (or classes) into the software and simply adding a few
rows to the RoleObject table for affected roles. Similarly, as information needs
change views can be easily adapted or new views created by adding or removing rows
from the RoleObjects table. By storing the databases locally there is potential for each
site to develop site-specific (or individualised) roles to best support local working
practices.

This work is in its early stages and potential challenges to continued development
are currently being evaluated. First, administration and long-term maintenance of the
system must be considered. For example, who will have rights to alter each view, who
will be responsible for updating the database when new services are introduced, and
can/should this be done automatically. Secondly, additional database retrievals will
decrease overall system performance. While the small size and local hosting of the
proposed database should minimize this problem, the actual impact must be evalu-
ated. Finally, if local sites are allowed to alter pre-defined views, there must be some
way of recovering or returning to these ‘standard’ views in case of problems.

4 Conclusion

This paper presents an outline design for a healthcare information system to support
collaboration among healthcare teams. Because requirements for such a system will
vary between practitioners, patients, and over time, evolvability and flexibility of the
system has been emphasised. In order to provide maximum adaptability we propose
that views should be determined through a simple local database which associates
MDT members with appropriate information access.

This work is still in early stages and development of a prototype system is under-
way for purposes of evaluation. Potential benefits and challenges of the system have
been considered. Benefits include increased flexibility and potential for personalisa-
tion of views. Challenges include maintenance of the database and potential impacts
on overall system performance.

180 A. Skilton et al.

The emphasis on supporting collaboration while providing individualised and
flexible access differentiates this work from other information sharing projects in
healthcare. The work also concentrates on supporting the patient-centric view at the
heart of the MDT and meeting the needs of the individual team members to access
information about a patient from the available information resources.

References

1. Welsh Office, RCGP Summary Paper: Quality Care and Clinical Excellence, NHS Wales
(1998)

2. Department of Health. The New NHS (1997) (accessed 10/01/2007),
http://www.archive.official-documents.co.uk/document/doh/
newnhs/forward.htm

3. Department of Health. Shifting the Balance of Power: The Next Steps, p. 55 (2002)
4. Informing Healthcare. Informing Healthcare Home (2007) (accessed 10/11/2007),

http://www.wales.nhs.uk/IHC/
5. Allam, O.: A Holistic Analysis Approach to Facilitating Communication Between GPs and

Cancer Care Teams, PhD Dissertation, Cardiff University (2006)
6. Street, A., Blackford, J.: Communication Issues for the Interdisciplinary Community Pal-

liative Care Team. Journal of Clinical Nursing 10, 643–650 (2001)
7. Skilton, A., et al.: A New Approach to Connecting Information Systems in Healthcare. In:

Proceedings of 24th Annual British National Conference on Databases, Glasgow (2007)
8. Allam, O., et al.: The ISCO Information System: a Model of Coexistence with the Inte-

grated National Care Record. In: Proceedings of 9th International Symposium for Health
Information Management Research (2004)

9. Informing Healtcare. Welsh Clinical Portal (2007) (accessed 23/01/2008),
http://www.wales.nhs.uk/ihc/page.cfm?pid=23396

10. Ivins, W., et al.: Supporting Coordination of Integrated Care Pathways with Workflow
Technology. In: 11th International Symposium of Health Information Management Re-
search (2006)

11. Al-Busaidi, A., et al.: Personalising Web Information for Patients: Linking Patient Medical
Data with the Web via a Patient Personal Knowledge Base. Health Informatics Journal 12,
27–39 (2006)

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 181–184, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Peer-to-Peer Database Server

John Colquhoun and Paul Watson

School of Computing Science, Newcastle University, Newcastle-upon-Tyne, NE1 7RU,
United Kingdom

{John.Colquhoun,Paul.Watson}@ncl.ac.uk

Abstract. Database systems have traditionally used a Client-Server architec-
ture. If the server becomes overloaded, clients will experience an increase in
query response time, and in the worst case the server may be unable to provide
any service at all.

In the domain of file-sharing, the problem of server overloading has been
successfully addressed by the use of Peer-to-Peer (P2P) techniques in which
clients (peers) supply files – or pieces of files – to each other. This paper de-
scribes the Wigan P2P Database System, which was designed to investigate
how P2P techniques for reducing server load and so increasing system scalabil-
ity can be applied successfully in a database environment. Peers cache query re-
sults and use them to satisfy each other’s queries. Wigan is based on the popular
BitTorrent file-sharing protocol.

1 Introduction

In this paper we describe Wigan – a P2P database system designed to investigate
whether the techniques used by file-sharing systems such as BitTorrent can be applied
to building highly scalable database systems. We believe that this work is timely as
almost all computers, including desktop PCs, now have significant quantities of spare
resources (CPU, memory, disk, network bandwidth) that could potentially be used to
reduce the load on a database server, if only algorithms to allow this could be de-
signed. In Wigan, clients cache the results of their queries and these are then used to
answer subsequent queries from themselves and other clients, so reducing the load on
the server.

2 System Architecture

The Wigan system is derived from BitTorrent and hence the three major components
in Wigan have the same names and basic roles as their counterparts in BitTorrent –
the Seed, the Peers and the Tracker. Each is now discussed in turn.

The Seed: A Wigan seed possesses a complete copy of the database. Initially, the
seed answers all queries (acting as if it were the server in a traditional client-server
database). If at any time a downloading peer submits a query which cannot be an-
swered by any of the other available peers, the query is answered by the seed.

182 J. Colquhoun and P. Watson

The Peers: The peers send out queries and receive the results. However, they also
cache the results of the queries in a local database server. This allows them to answer
each other’s queries, so taking the load away from the seed and providing greater
scalability.

The Tracker: The central component in the Wigan system is the Tracker. This
performs the same basic functionality as its namesake in BitTorrent in that it provides
the downloading peers with a list of possible uploaders for the query they are request-
ing. However, due to the increased complexity of database queries when compared to
file access, the Wigan Tracker has much more functionality and complexity. When a
peer issues a query, it is sent first to the Tracker. This holds information on all the
queries that have already been executed, along with the id of the peer that is caching
the result. These “adverts” are stored in a canonical form representing the tables,
columns and conditions on these columns for each query.

When a query arrives at the Tracker from a peer, it checks these adverts to see
which other peers could answer the query. In Wigan, it is possible for a downloader’s
query to match exactly with an advertisement. It is also possible that the query is a
proper subset of one or more advertisements. An example in SQL would be:

Query: SELECT item FROM parts WHERE cost <= 10
Advert1: SELECT item FROM parts WHERE cost <= 10
Advert2: SELECT item FROM parts WHERE cost <= 15

Both adverts can satisfy the query. On arrival at the Tracker, the downloader’s query
is converted into the same canonical form as is used to store the adverts. The Tracker
then retrieves all adverts which contain the tables and columns in the downloader’s
query. This initial selection process removes the advertisements which do not have all
of the required columns or contain none of the tables that appear in the downloader’s
query. The Tracker then examines all of these advertisements to check that the condi-
tions in the “WHERE” clause of the advertisement do not prevent the advertisement
from resolving the downloader’s query. The result of the final part of the selection proc-
ess is a collection of adverts which can all resolve the downloader’s query.

This collection of adverts may include a selection of different queries, given that
we have already shown how one query may be resolved by an advert for a different
query, providing that query is a proper subset of the advert. To enable a downloader
to distinguish between adverts for different queries, the Tracker will group the adverts
by query, stating for each query how many pieces the downloader should receive.
This ensures the downloader is aware of when it can stop sending requests for data.

The process of downloading and uploading in Wigan will now be described. A new
downloader must contact the Tracker with the SQL query that it wishes to execute.
The Tracker, using the processes described above, will return a list of suitable adverts
grouped by query and the downloader must first select a group. For performance
reasons, the downloader will choose those queries which exactly match the one it is
searching for if this is possible or if it is not, start with the closest to an exact match.

The downloader contacts a randomly selected uploader peer from its chosen query
group and submits a query for the first piece. If the uploader is able to accommodate a
new downloader, it will perform the query and return all tuples from the first piece
which matches the conditions of the query. A header with the query, piece number
and a query ID is included so that if a downloader is receiving multiple queries

 A Peer-to-Peer Database Server 183

simultaneously it can correlate responses to requests. Note that if there is no data in
the first piece which matches the conditions of the query, the uploader will still send a
response, containing just the header and no tuples. This prevents the downloader from
assuming the response has gone missing due to a network or peer failure.

Once the first piece has arrived, the downloader stores the data in its local data-
base and then makes a request for the next piece (potentially to a different peer). This
process continues until the downloader has received all of the pieces. The downloader
knows when this point occurs because the Tracker has informed it of the number of
pieces. To improve performance, query requests for different pieces can be sent to a
set of peers in parallel.

3 Evaluation

We have developed a simulator of the Wigan system using the SimJava tool [1]
alongside a simulator of a Client-Server database system. This has enabled us to ex-
plore the differences in behaviour for systems with up to several thousand clients.
This simulator was connected to a SQLServer database storing the data from the
Transaction Processing Council’s TPC-H benchmark [2]. The Wigan simulator was
initially developed as a simulation of BitTorrent, calibrated against experimental
results from real BitTorrent systems [3]. It was then developed into a simulation of
Wigan. In the simulator, query execution itself was not simulated. Instead, each peer
that received a query contacted the underlying database and executed a real query.
This saved considerable implementation effort. The experiment we present here ex-
amined the behaviour for workloads consisting of multiple queries. In this experi-
ment, there were five different small queries. The same set of queries was used for
both the P2P and the Client-Server experiments. In Wigan, 2,600 peers were used.
One of these was the seed and the first five warmed the cache. These five peers each
submitted one of the five queries. There was a two minute gap to allow these five
peers more than enough time to download and begin advertising. The remaining peers
picked one of the five queries at random and submitted queries at a rate of six queries
per second.

0

5

10

15

20

25

30

P2P Client-Server

Database type

rev
A

ga
er

e
ps

on
se

t i
m

e
(s

)

All peers
Excluding cache-warmers

Fig. 1. Average response times for the warm-cache experiments with five repeating queries

184 J. Colquhoun and P. Watson

In the Client-Server system, there was one server and 2,599 clients. To make a fair
comparison with Wigan, the first five peers each submitted one of the five queries and
there was a two minute gap before the remaining peers began submitting one of the
five queries chosen at random. The rate was kept at six queries per second.

The response times are shown in Fig. 1. Two sets of response times are shown for
each system in Fig. 1 – including and excluding the cache-warmers.

The cache-warming peers are able to host the first rush of downloaders when the
continual query stream begins and once these start advertising, they can also provide
queries to future downloaders.

4 Conclusions

This paper has introduced the Wigan P2P Database System, a database architecture
derived from the popular BitTorrent file-sharing protocol. This is, to our knowledge,
the first P2P database system designed with a focus on scaling up the performance of
a single database server, rather than on federating distributed databases. The combina-
tion of the Tracker and seed, described in this paper, ensures that peers will always
receive a correct and complete set of results for their queries if that is possible.

The results obtained from simulation show that P2P techniques can be applied to
scaling database servers, and can, in certain cases, outperform a client-server data-
base. Interestingly, when a database is first published through Wigan, the initial per-
formance characteristics match that of the “flashcrowd” effect found in filesharing
through BitTorrent. However, once this initial period is over the system behaviour
demonstrates the power of the P2P approach in achieving performance scalability.

Work on Wigan is continuing. This includes an investigation into the best algo-
rithms for implementing joins in a P2P environment. We are also building a “native”
(non-simulated) version of Wigan to support a further range of experiments.

References

1. The SimJava tool, http://www.dcs.ed.ac.uk/home/hase/simjava/
2. Transaction Processing Council TPC-H Benchmark, http://www.tpc.org/tpch/
3. Izal, M., Urvoy-Keller, G., Biersack, E.W., Felber, P., Hamra, A.A., Garcés-Erice, L.: Dis-

secting BitTorrent: Five Months in a Torrent’s Lifetime. In: Barakat, C., Pratt, I. (eds.)
PAM 2004. LNCS, vol. 3015. Springer, Heidelberg (2004)

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 185–188, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Checking the Integrity Constraints of Mobile Databases
with Three-Level Model

Hamidah Ibrahim1, Zarina Dzolkhifli1, and Praveen Madiraju2

1 Department of Computer Science
Faculty of Computer Science and Information Technology

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
hamidah@fsktm.upm.edu.my, zarinadzolkhifli@yahoo.com

2 Department of Mathematics, Statistics, and Computer Science
Marquette University, USA

praveen@mscs.mu.edu

Abstract. In a mobile environment, due to the various constraints inherited
from limitations of wireless communication and mobile devices, checking for
integrity constraints to maintain the consistent state of mobile databases is an
important issue that needs to be addressed. Hence, in this paper we propose
Three-Level (3-L) model, wherein the process of constraint checking is realized
at three different levels. Here, we use sufficient and complete tests together
with the idea of caching relevant data items during the relocation period for
checking the integrity constraints. This has improved the checking mechanism
by preventing delays during the process of checking constraints and performing
the update. Also, the 3-L model reduces the amount of data accessed given that
much of the tasks are performed at the mobile host. Hence, our model speeds up
the checking process.

Keywords: Mobile databases, integrity constraints, constraint checking.

1 Introduction

Recently, there has been an increasing interest in mobile computing due to the rapid
advances in wireless communication and portable computing technologies. Massive
research efforts from academia and industry have been put forth to support a new
class of mobile applications such as just-in-time stock trading, mobile health services,
mobile commerce, and mobile games as well as migrating the normal conventional
applications to mobile applications. Users of these applications can access infor-
mation at any place at any time via mobile computers and devices such as mobile
phone, palmtops, laptops, and PDA [3].

While technology has been rapidly advancing, various constraints inherited from
limitations of wireless communication and mobile devices remain primary challenges
in the design and implementation of mobile systems and applications. These con-
straints include: limited client capability, limited bandwidth, weak connectivity and
user mobility. Mobile devices generally have poor resources and thus it is usually

186 H. Ibrahim, Z. Dzolkhifli, and P. Madiraju

impossible for them to store all data items in the network. In addition, disconnections
occur frequently, which may be intentional (e.g., to save battery power) or unintentio-
nal (e.g., due to signal interference). These constraints make the wireless and mobile
computing environments uniquely different from a conventional wired server/client
environment [3].

A general architecture of a mobile environment consists of base stations (BS) and
mobile hosts (MH). The base station is a stationary component in the model and is
responsible for a small geographic area called a cell. They are connected to each other
through fixed networks. The mobile host is the mobile component of the model and
may move from one cell to another. These mobile hosts communicate with the base
stations through wireless networks. Since a mobile host is not capable of storing all
data items in the network, thus it must share some data item with a database in the
fixed network. Any update operation or transaction that occurs at the mobile host
must guarantee database consistency. A database state is said to be consistent if the
database satisfies a set of statements, called integrity constraints, which specify those
configurations of the data that are considered semantically correct. The process of
ensuring that the integrity constraints are satisfied by the database after it has been
updated is termed constraint checking, which generally involves the execution of
integrity tests. In a mobile environment, checking the integrity constraints to ensure
the correctness of the database spans at least the mobile host and one other database
(node), and thus the update is no longer local but rather distributed [4]. As mentioned
in [4], the major problem in the mobile environment are unbounded and unpredictable
delays can affect not only the update but other updates running at both the mobile and
the base stations, which is clearly not acceptable for most applications. With the same
intuition as [4], we address the challenge of extending the data consistency mainte-
nance to cover disconnected and mobile operations.

This paper is organized as follows. In Section 2, the previous works related to
this research are presented. Section 3 describes the Three-Level (3-L) model. Conclu-
sions are presented in the final section 4.

2 Related Work

Much of the research concerning integrity constraint checking construct efficient
integrity tests, for a given integrity constraint and its relevant update operation, but
these approaches are mostly designed for a centralized environment. As centralized
environment has only a single site, the approaches concentrate on improving the
checking mechanism by minimizing the amount of data to be accessed during the
checking process. Hence, these methods are not suitable for mobile environment as
the checking process often spans multiple nodes.

Although there are a few studies that have been conducted to improve the check-
ing mechanism by reducing the amount of data transferred across the network in
distributed databases such as [2], but these approaches are not suitable for mobile
databases. These approaches reformulate the global constraints into local constraints
(local tests) with an implicit assumption that all sites are available, which is not true
in mobile environment, where a mobile unit may be disconnected for long periods.
Even though failure is considered in the distributed environment, but none of the

 Checking the Integrity Constraints of Mobile Databases with Three-Level Model 187

approach cater failure at the node where the update is being executed, i.e. disconnec-
tion at the target site.

Other approaches such as [1] focus on the problems of checking integrity con-
straints in parallel databases. These approaches are not suitable for mobile databases
as the intention of their approach is to speed up the checking process by performing
the checking concurrently at several nodes. To the best of our knowledge, PRO-
MOTION [4] is the only work that addresses the issues of checking integrity con-
straints in mobile databases. Our proposed model differs from the approach proposed
in [4] since it is intended to cater for the important and frequently used integrity con-
straints, i.e. those that are used in database application. Mazumdar’s approach [4] is
restricted to set-based constraints (equality and inequality constraints).

3 The Three-Level (3-L) Model

The Three-Level (3-L) model consists of three distinct levels, as depicted in Figure 1.
When a user submits an update operation through a mobile host, the list of constraints,
IC, at the mobile host is checked. Violation of any of the constraints will abort the
operation. Otherwise, if the checking process does not require information from the
other sites, then IC is said to be satisfied and the update operation is safe to be per-
formed. The second level is invoked if the information stored at the mobile host is not
sufficient to validate whether the constraint IC is violated or not. At the first level, the
process of checking the constraints spans only the mobile host, i.e. local to the mobile
host. The type of test suitable for this level is the sufficient test with the existential
quantifier since the mobile host has limited capacity and thus the information (rela-
tions) stored at the mobile host is limited. For example, the test (∃t∃v∃w)(employee(t,
b, v, w)) is a sufficient test, which checks the existence of at least an employee who is
currently working in the department b. If such information is available at the mobile
host, then we conclude that the initial constraint is satisfied. If there is no such infor-
mation, then further checking needs to be performed. The properties of the sufficient
test can be upgraded to be similar to the properties of the complete test if all possibili-
ties of values for the required data item are cached to the mobile hosts. For example,
referring to the above sufficient test one notices that comparison is performed against
the values of the dno. Assuming that the company has four departments, and a vertical
fragment of the department table consisting of the distinct dno is cached to the mobile
host, then performing the test against these data items can verify whether the test is
satisfied or not, and eventually verify if the initial constraint is satisfied or violated.
Caching can be performed during the relocation period.

The second level commences if the mobile host failed to validate the truth of the
IC. The base station in the current position of the mobile host is responsible for
checking the constraints. The base station checks the validity of the constraints
against the data stored at its location. At this level, the process of checking the con-
straints spans the current cell of the mobile host, i.e. local to a cell of the current loca-
tion of the mobile host. The types of test suitable for this level are the sufficient test
and the complete test with the existential quantifier. If the information stored at the
base station is not sufficient then the next level is invoked. However, if violation is
detected then the base station notifies the mobile host to abort the update operation.
The update operation is safe to be performed if no violation is detected.

188 H. Ibrahim, Z. Dzolkhifli, and P. Madiraju

Third Level:
- spans the remote cells
- sufficient test and complete test

Second Level:
- spans the current cell of the mobile host
- sufficient test and complete test

- -

First Level:
- spans the mobile host
- local to the mobile host
- sufficient test

- -

Fig. 1. The Three-Level (3-L) model

The next level, third level, spans the remote base station(s), checks the validity of
the constraints against the data stored at the remote site(s). Depending on the protocol
of the mobile environment, either the flooding technique or the broadcasting tech-
nique is used to perform the constraint checking at this level. Here, the types of test
that can be adopted are sufficient as well as complete test.

4 Conclusion

This paper has presented the Three-Level (3-L) model, which is designed for check-
ing database integrity in a mobile environment. This model not only treats the issue of
disconnection but also reduces the amount of data accessed during the process of
checking the consistency of the mobile databases given that much of the tasks are
performed at the mobile host. This is achieved by adopting the simplified forms of
integrity constraints, namely: sufficient and complete tests, together with the idea of
caching the relevant data items during the relocation period. Eventually the checking
mechanism of mobile databases is improved as delay during the process of checking
the integrity constraints and performing the update is reduced.

References

1. Hanandeh, F.A.H.: Integrity Constraints Maintenance for Parallel Databases. PhD Thesis,
UPM, Malaysia (2006)

2. Ibrahim, H., Alwan, A.A., Udzir, N.I: Checking Integrity Constraints with Various Types of
Integrity Tests for Distributed Databases. In: Proceedings of the Eighth International Con-
ference on Parallel and Distributed Computing Applications and Technologies (PDCAT),
pp. 151–152 (2007)

3. Ken, C.K.L., Wang-Chien, L., Sanjay, M.: Pervasive Data Access in Wireless and Mobile Com-
puting Environments. Journal of Wireless Communications and Mobile Computing (2006)

4. Mazumdar, S., Chrysanthis, P.K.: Localization of Integrity Constraints in Mobile Databases
and Specification in PRO-MOTION. In: Proceedings of the Mobile Networks and Applica-
tions, pp. 481–490 (2004)

Finding Data Resources in a Virtual

Observatory Using SKOS Vocabularies

Alasdair J.G. Gray1, Norman Gray2, and Iadh Ounis1

1 Computing Science, University of Glasgow, Glasgow, UK
2 Physics and Astronomy, University of Leicester, Leicester, UK

Abstract. One problem faced by astronomers using the virtual obser-
vatory is finding which of the multitude of data resources is relevant for
them. The current tool, VOExplorer, relies on matching searches against
tags provided by the resources. This paper shows how skos encoded vo-
cabularies can be used to improve the search results. The techniques are
general and applicable to any loose collaborations sharing their resources.

1 Introduction

There are many astronomical distributed computing resources and data reposi-
tories, ranging from small per-instrument data centres to large specialist archives
curating data from many instruments. Astronomers have traditionally focused on
one part of the electromagnetic spectrum, and become familiar with that particu-
lar terminology and the associated data resources. One goal of the various Virtual
Observatory (vo) projects, as mediated by the International Virtual Observatory
Alliance (ivoa; www.ivoa.net), is to facilitate multi-wavelength astronomy—
combining data taken in multiple wavelength domains, such as radio and X-ray.
However, increasing the number of available resources, as curated in the ivoa
repository, does not help if astronomers are unable to locate relevant ones.

This paper demonstrates how searches for relevant resources can be improved
by (i) using controlled vocabularies to tag resources, and (ii) exploiting the se-
mantic relationships that exist between the vocabulary terms. The first improve-
ment eliminates the current situation of ambiguity between the meanings of tags
associated with a resource and search terms, which should prevent irrelevant re-
sources being returned. The second improvement will allow the application to
explore alternative search terms available in the vocabularies that may have been
used to tag relevant resources, including terms that are unfamiliar to the user.

2 Controlled Vocabularies in Astronomy

Vocabularies formalise and limit the terminology used within a domain of dis-
course, while defining the semantic relationships between them [2]. A vocabulary
contains a set of concepts each of which captures the preferred label, alterna-
tive labels, definition, and notes about one term in the domain. A concept c1

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 189–192, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

www.ivoa.net

190 A.J.G. Gray, N. Gray, and I. Ounis

<#PlanetSatellite>
a skos:Concept;
skos:altLabel “Natural satellite”@en, “Celestial satellite”@en;
skos:broader <#Planet>, <#Satellite>;
skos:definition “A celestial body orbiting a planet.”@en;
skos:inScheme <>;
skos:narrower <#Moon>, <#Titan>;
skos:prefLabel “Planet satellite”@en, “Satellite planetaire”@fr;
skos:related <#ArtificialSatellite> .

Fig. 1. The skos encoding, in turtle notation [1], for an astronomomic vocabulary
concept. Note that “<>” refers to the current document.

Table 1. A summary of the astronomical vocabularies available in skos

Vocabulary Publisher Purpose Number of
Concepts

Journal Keywords Journal
publishers

Tagging articles to aid
retrieval

311

Astronomy Outreach
Imagery Metadata

ivoa Tagging images for
dissemination

208

The Astronomy Thesaurus iau Library cataloguing 2551

The ivoa Thesaurus ivoa Update of the Astronomy
Thesaurus

2890

Universal Content
Descriptors

ivoa Labelling data repository
column headings

473

can be related to another c2 as a broader term (c2 is more general), a nar-
rower term (c2 is more specific), or a related term (c2 shares an association).
The broader/narrower relationships define a poly-hierarchical structure for the
concepts. It should be noted that the broader/narrower terms do not prescribe
a subsumption relationship, but are given the operational definition that any
resource retrieved via a given term would also be retrieved via its broader term.

The Simple Knowledge Organisation System (skos) [7] is a mechanism to
share taxonomies, thesauri, and vocabularies, in a machine understandable way.
Information about a concept and its relationships are made as rdf statements
[5] (see Fig. 1 for an example), allowing systems to appear to “understand” the
concepts in a vocabulary by exploring the relationships between them. skos pro-
vides looser semantics than owl [6], which are ideal for modelling a vocabulary.

There exist many astronomical vocabularies developed by a variety of organi-
sations. Each vocabulary has been developed to address the needs of their users,
which may include astronomers, librarians, or the general public. For example,
the journal keywords vocabulary is used to tag research articles with descriptions
of their content in order to aid retrieval. The ivoa is using skos to formalise
these existing and future vocabularies, and we have embarked on the specifica-
tion [4] and development work to support this (summarised in Table 1).

skos also provides relationships for mapping concepts between vocabular-
ies. These are exact match (equivalent concepts), broad match (a more general

Finding Data Resources in a Virtual Observatory 191

concept), narrow match (a more specific concept), and related match (an as-
sociated concept). Suggested best practice within the skos community is to
declare the mappings between pairs of vocabularies in a separate document,
since the mappings tend to be less authoritative than the relationships within a
vocabulary. It should be noted that there is a substantial cost in identifying and
maintaining mappings between vocabularies. As such, mappings are not required
for each pair of vocabularies. Rather, if vocabulary A is mapped to vocabulary
B and vocabulary B is mapped to vocabulary C, then vocabulary exploration
techniques can be applied to follow links from A to C via B.

3 Finding Relevant Resources

A major problem facing astronomers using the vo is identifying which of the
12,383 registry resources1 are relevant for their research: that is, which archives
contain data about celestial bodies they are researching. Currently, they use
VOExplorer [8], a keyword search interface that relies on resources providing
“tags” to describe their content. The provider is free to pick any keywords for
their tags. However, no semantic information such as a definition is provided.

When an astronomer searches for resources using VOExplorer, they are also
free to select their own terms. There are no guarantees that the astronomers will
pick the same terms as the resource providers, resulting in no matches; or that
the meanings that they imagine for the terms will be the same as those used
by the resources, resulting in irrelevant resources being returned (cf. the term
mismatch problem [3]). Additionally, if the search term and the resource tag are
too generic, then the user can be swamped with thousands of results.

Instead, we propose that resources should select tags from one of the existing
skos encoded vocabularies published by the ivoa [4]. This would provide a defi-
nition for each tag, so all users of the system can apply the same meaning for it.
Additionally, a user’s query term can be automatically expanded, or refinements
suggested, by exploring the semantic relationships between vocabulary concepts.

Consider a resource about the satellites of planets which has been tagged
with the term Natural satellite and an astronomer searching for resources
about the Earth’s moon using the search term Moon. Using the current VOEx-
plorer, the astronomer would not see the resource as a result since the search
term and the tag are different. However, if the information contained in the vo-
cabulary concept Planet satellite presented in Fig. 1 were used, then by the
alternative label the application would know that the resource is about Planet
satellites. Additionally, due to the narrower term Moon, it could reason that
the resource is relevant for the astronomer’s search2.

We have produced a web service for exploring the vocabularies using the same
general principles3. We plan to add semantic search facilities to VOExplorer and,
1 Checked on 21 January 2008.
2 The example could equally have relied on some mapping between concepts in differ-

ent vocabularies to find related terms for the astronomer’s search.
3 http://explicator.dcs.gla.ac.uk/WebVocabularyExplorer/

http://explicator.dcs.gla.ac.uk/WebVocabularyExplorer/

192 A.J.G. Gray, N. Gray, and I. Ounis

once that is completed, we will work with astronomers to produce an evaluation
of the search results returned by the improved service.

4 Conclusions

This paper considered how astronomers can be helped in locating and identifying
relevant resources in a virtual observatory by using skos encoded vocabularies.
We showed that the existing approach can be improved by exploring the semantic
relationships between vocabulary concepts. The proposed framework wraps the
knowledge contained in the vocabularies and could provide (i) improved precision
of results by providing definitions for tags, (ii) increased recall of results by
expanding search terms using equivalent terms from multiple vocabularies, and
(iii) result set refinement based on the semantic relationships in the vocabularies.
The techniques used to model the vocabularies, and mappings, are not specific
to astronomy and could be applied to any sets of vocabularies. Additionally, the
results returned by the service only rely on the vocabularies and mappings that
it has available. Thus, the service could be used in other application areas by
loading in suitable vocabularies and allowing an application front end to make
use of the returned information.

Acknowledgements. We would like to acknowledge the work of the ivoa se-
mantics group and the funding of the EPSRC grant number EP/E01142X/1.

References

1. Beckett, D., Berners-Lee, T.: Turtle - Terse RDF triple language. Team submission,
w3c (2008), http://www.w3.org/TeamSubmission/turtle/

2. Structured vocabularies for information retrieval–guide–definitions, symbols and ab-
breviations. British Standard BS 8723-1:2005, BSI (2005)

3. Furnas, G.W., Landauer, T.K., Gomez, L.M., Dumais, S.T.: The vocabulary prob-
lem in human-system communication. CACM 30(11), 964–971 (1987)

4. Gray, A.J.G., Gray, N., Hessman, F.V., Preite Martinez, A. (eds.): Vocabularies in
the virtual observatory. Working draft, ivoa, February 22 (2008),
http://www.ivoa.net/Documents/latest/vocabularies.html

5. Manola, F., Miller, E. (eds.): RDF primer.Recommendation, w3c, February 10 (2004),
http://www.w3.org/TR/rdf-primer/

6. McGuinness, D.L., van Harmelen, F. (eds.): OWL web ontology language overview.
Recommendation,w3c,February 10 (2004), http://www.w3.org/TR/owl-features/

7. Miles, A., Bechhofer, S. (eds.): SKOS simple knowledge organization system refer-
ence. Working draft, w3c, January 25 (2008),
http://www.w3.org/TR/skos-reference

8. Tedds, J., Winstanley, N., Lawrence, A., et al.: VOExplorer: Visualising data dis-
covery in the virtual observatory. In: ADASS XVII, London (September 2007)

http://www.w3.org/TeamSubmission/turtle/
http://www.ivoa.net/Documents/latest/vocabularies.html
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/skos-reference

Progressive Ranking for Efficient Keyword

Search over Relational Databases

Guoliang Li, Jianhua Feng, Feng Lin, and Lizhu Zhou

Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China

{liguoliang,fengjh,dcszlz}@tsinghua.edu.cn,
lin-f@mails.tsinghua.edu.cn

Abstract. The existing approaches of keyword search over relational
databases usually first generate all possible results composed of relevant
tuples and then sort them based on their individual ranks. These tra-
ditional methods are inefficient to identify the top-k answers with the
highest ranks. This paper studies the problem of progressively identi-
fying the top-k answers from the relational databases. The approach of
progressively identifying the answers is very desirable as it generates the
higher ranked results earlier thereby reducing the delay in responding
to the user query. We have implemented our proposed method, and the
experimental results show that our method outperforms existing state-
of-the-art approaches and achieves much better search performance.

1 Introduction

Keyword search is a proven and widely accepted mechanism for querying in tex-
tual document systems and World Wide Web. The database research community
has recently recognized the benefits of keyword search and has been introducing
keyword search capability into relational databases [2,3,6], XML databases [7,8],
and graph databases [6], and heterogenous data sources [9,10].

Keyword search has been proposed as an alternative means for querying the
underlying databases, which is simple and yet familiar to most internet users
as it only requires the input of some keywords. Although keyword search has
been proven to be efficient for textual documents (e.g. HTML documents), the
problem of keyword search on the structured data (e.g. relational databases) and
the semi-structured data (e.g. XML documents) is not straightforward nor well
studied. The alternative approaches of keyword search over relational databases
can be broadly classified into candidate network based [4],[5] and Steiner tree
based approaches [1],[2],[6]. The Steiner tree based methods first model tuples
in the relational database as a graph, where nodes are tuples and edges are
primary-foreign-key relationships, and then identify the Steiner trees which con-
tain all or a part of input keywords to answer keyword queries by discovering the
structural relationships of primary-foreign-keys on the fly. However, the Steiner
tree based methods have been proven to be an NP-hard problem [1]. The candi-
date network based methods identify the answers composed of relevant tuples by

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 193–197, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

194 G. Li et al.

generating and extending the candidate networks, such as the primary-foreign-
key relationships. However, most of existing literatures always fist compute the
answers and then rank them.

Alternatively, we propose to efficiently and progressively identify the Steiner
trees from relational databases. Clearly, our proposed method is more desirable
since it generates the higher ranked results earlier thereby reducing the delay in
responding to the user query. Furthermore, users in general specify queries in the
form: “Give me the top-k answers”. Hence, the approach of progressive keyword-
based query processing is more desirable to identify the top-k answers with the
highest ranks. Another advantage of the progressive query processing is that
in some applications, it is perhaps impossible to generate all possible answers.
Based on above observations, in this paper, we emphasize on the search efficiency
of keyword search over relational databases and study the problem of progressive
keyword-based query processing.

2 Progressive Ranking for Efficient Keyword Search

We model the tuples in the underlying relational databases as a graph G(V , E),
where nodes (V) are tuples and edges (E) are primary-foreign-key relationships.
The graph G is an undirected graph if the direction, either from foreign key
to primary key or from primary key to foreign key, is not the main concern.
Otherwise, the graph is a directed graph where there are two edges (u, v) and
(v, u) in E such that (u, v)�=(v, u). Graph G(V , E) is weighted with a node-weight
ω(v) for every node v ∈ V and an edge-weight ω(u, v) for every edge (u, v) ∈ E ,
both of which are non-negative numbers.

To model the problem of identifying the top-k relevant answers from relational
databases, we introduce the traditional Steiner tree problem [1].

Definition 1. Minimum Steiner Tree: Given a database graph G(V , E) and
a subset V ′ of V, the connected subtree of G which includes all vertices in V ′

is called a Steiner Tree. The problem of finding the Steiner tree with minimum
cost, is called the minimum Steiner tree problem.

However, the Steiner tree based methods have been proven to be an NP-hard
problem [1], we cannot find the minimum Steiner trees in polynomial time. Al-
ternatively, we can progressively identify the most relevant Steiner trees and
return them first, and thus reduce the response time.

For each keyword, there are some nodes which contain them, we call them
content nodes. There are also some nodes which indirectly contain them if there
is a path from the node to another content node which contain the keyword.
Accordingly, we can maintain an inverted lists for each term t, the entries are
the nodes which directly or indirectly contain t. For the node n, which indirectly
contains the keyword, we also preserve the path from n to the content node,
which have shortest path to n. We call such path Key-Node-Path.

Accordingly, the inverted list is composed of a triple <node,Key-Node-Path,
weight>. We denote the inverted list for term t as It. For example, in Figure 1,
we have the inverted lists for terms k1 and k2 as follows:

Progressive Ranking for Efficient Keyword Search 195

0.6

0.5

0.7

0.9

0.70.6k
1 k

2
k

1

k
1

k
2

a
1

a
2

a
3

a
4

a
5 a

6

a
7

a
8

a
10

a
11

a
9

k
1 k

2

k
1

0.9

0.9

0.5

0.8
0.9

T
1

T
2

T
3

T
4

Fig. 1. A Running Example

Ik1=<a4, a4, 0>;<a6, a6, 0>;...;<a1, a1-a4, 0.5>;<a1, a1-a6, 0.6>;<a2, a2-a7, 0.6
>;<a3, a3-a9, 0.7>;<a3, a3-a11, 0.9>;...
Ik2=<a5, a5, 0>;<a8, a8, 0>;...;<a8, a8-a2, 0.5>;<a5, a5-a1, 0.6>;<a10, a10-a3,
0.8>;...

Given a keyword query with n keywords, k1,k2,...,kn, we first identify the in-
verted lists of each ki, and then identify the top-k nodes, which has the minimum
weight sum. Finally, we combine the Key-Node-Paths to construct the Steiner
tree and return the answers. Note that, we can employ the threshold-based tech-
niques [10] to progressively and efficiently identify the top-k relevant nodes, thus
we can employ progressive ranking for efficient keyword search over relational
databases.

For example, given a keyword query with two input keywords {k1,k2}, we
compute top-4 relevant results. We first retrieve the inverted lists for the two
keywords. Then, we identify the top-4 relevant nodes with minimum weight sum,
a1,a2,a1,a3 with cost respectively 1.1,1.1,1.3,1.5. Finally, we combine the Key-
Node-Paths to construct the top-4 relevant Steiner trees, i.e., T1,T3,T2, and T4.
Accordingly, we can efficiently and progressively identify the answers.

Note that, we can find the accurate minimum Steiner tree for the keyword
queries with the number of keywords no larger than 3. Even if the number of
input keyword is larger than 3, we can approximately identify the answers and
get the most relevant ones.

3 Experimental Study

We have implemented our proposed method. We report some experimental re-
sults in this section. We compared our algorithm with existing state-of-the-art
algorithms BANKS-II [6] and DPBF [2]. We employed the DBLP1 and IMDB2(a
movie database) datasets to compare these algorithms. The raw file of the DBLP
dataset was about 420MB. IMDB contains approximately one million anonymous
1 http://dblp.uni-trier.de/xml/
2 http://www.grouplens.org/

196 G. Li et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

65432

E
la

ps
ed

 T
im

e
(m

s)

(a) # of keywords (DBLP)

BANKS-II
DPBF

Dominate-Tree

 0

 500

 1000

 1500

 2000

 2500

 3000

65432

E
la

ps
ed

 T
im

e
(m

s)

(b) # of keywords (IMDB)

BANKS-II
DPBF

Dominate-Tree

Fig. 2. Elapsed Time of Identifying Top-100 Results

ratings of 3900 movies made by 6040 users. We selected one hundred keyword
queries with different numbers of input keywords to compare the algorithms. We
computed the top-100 answers and compared the corresponding elapsed time.
All the experiments were conducted on a computer with an Intel(R) Core(TM)
2@2.33GHz CPU, a 2GB of RAM and a 120G Disk running Windows XP, and
all the algorithms were implemented in C++.

We evaluate the search efficiency for various algorithms. Figure 2 illustrates
the experimental results, where KeyPath-Tree denotes our algorithm. We observe
that our algorithm achieves much better search performance than the existing
methods, which gives us rich confidence that the KeyPath-Tree based method
can improve the search efficiency as we need not identify the answers by discov-
ering the relationships between tuples in different relational tables on the fly.
Alternatively, we adaptively identify the answer. Hence, our method leads to
a significant improvement over the existing approaches. For instance, on IMDB
dataset, KeyPath-Tree costs less than 200ms to answer the keyword queries with
three input keywords while the other two methods involve more than 2000ms.

Acknowledgement

This work is partly supported by the National Natural Science Foundation of
China under Grant No.60573094, the National High Technology Development
863 Program of China under Grant No.2007AA01Z152 and 2006AA01A101,
the National Grand Fundamental Research 973 Program of China under Grant
No.2006CB303103.

References

1. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword
searching and browsing in databases using banks. In: ICDE, pp. 431–440 (2002)

2. Ding, B., Yu, J.X., Wang, S., et al.: Finding top-k min-cost connected trees in
databases. In: ICDE (2007)

3. He, H., Wang, H., Yang, J., Yu, P.: Blinks: Ranked keyword searches on graphs.
In: SIGMOD (2007)

4. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient ir-style keyword search
over relational databases. In: VLDB, pp. 850–861 (2003)

Progressive Ranking for Efficient Keyword Search 197

5. Hristidis, V., Papakonstantinou, Y.: Discover: Keyword search in relational
databases. In: VLDB, pp. 670–681 (2002)

6. Kacholia, V., Pandit, S., et al.: Bidirectional expansion for keyword search on graph
databases. In: VLDB, pp. 505–516 (2005)

7. Li, G., Feng, J., Wang, J., Zhou, L.: Efficient keyword search for valuable lcas over
xml documents. In: CIKM (2007)

8. Li, G., Feng, J., Wang, J., Zhou, L.: Race: Finding and ranking compact connected
trees for keyword proximity search over xml documents. In: WWW (2008)

9. Li, G., Feng, J., Wang, J., Zhou, L.: Sailer: An effective search engine for unified
retrieval of heterogeneous xml and web documents. In: WWW (2008)

10. Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L.: 3-in-1: Efficient and adaptive key-
word search on unstructured, semi-structured and structured data. In: SIGMOD
(2008)

Semantic Matching for the Medical Domain

Jetendr Shamdasani�, Peter Bloodsworth, and Richard McClatchey

CCS Research Centre, CEMS Faculty, University of the West of England
Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK

firstname.lastname@cern.ch

Abstract. This paper proposes some modifications to the SMatch algo-
rithm that enables the semantic matching of medical terminologies using
the Unified Medical Language System (UMLS) as a source of background
knowledge. Semantic Matching is the process of discovering set theoretic
relationships between differing data elements. Initial results from the do-
main of anatomy are presented that illustrate how semantic relationships
can provide greater information during the ontology alignment process
than equivalence relationships alone. The paper concludes by demon-
strating how this is beneficial in the medical domain.

1 Introduction and Previous Work

Semantic Matching is the process of discovering set theoretic based relation-
ships between differing concepts within two schemas or ontologies. The power
of this approach is that it is able to identify a range of expressive relationships
between concepts, in particular less general (�), more general (�) and disjoint-
ness (⊥) relations in addition to standard equivalence (=). In this paper we
present a modification to the SMatch [1] system to make it applicable in the
medical domain. The conventional SMatch method relies heavily on the use of
the WordNet (WN) thesaurus [2]. The problem with using this resource is that
it is too general, with an insufficient amount of medical terminology. This often
leads to few meaningful relationships being returned when two medical ontolo-
gies are matched. A source of medical terminology is therefore required to drive
the alignment process in a medical context. The UMLS [3] has been chosen for
this purpose because of its wide coverage of clinical terms. We have modified the
SMatch method to use the UMLS during the matching of medical ontologies. A
prototype has been created and experimentation comparing the results from our
extension to the output from the original SMatch system in a medical context
has yielded promising results.

Research in the field of schema and ontology matching is active and several
different approaches have been proposed. The work contained in [4] gives a more
detailed review of the current research in this area. Semantic Matching involves
the use of a structured background resource to extract matches between concepts

� Corresponding Author: This work has been funded by the Health-e-Child project
(IST 2004-027749) Thanks to Tamas Hauer, Dmitry Rogulin and Andrew Branson.

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 198–202, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Semantic Matching for the Medical Domain 199

in differing ontologies. Previous work has been conducted with use of a single
background resource [5] or many background sources [6]. These approaches rely
firstly on discovering terms in a background source, which they call “anchors”
and then performing inferencing by using the knowledge gathered from the back-
ground knowledge by differing anchoring methods. Obviously this anchoring step
relies on there being a certain amount of lexical overlap between the sources to
be matched and the background resource. Our work concerns the modification
of the SMatch approach by Ginunchiglia et al [1]. Section 2 presents our modi-
fications to the SMatch system to incorporate the UMLS.

2 SMatch Applied to the Medical Domain

WN is primarily a lexical resource about the English language whereas the UMLS
is a conceptual resource about the medical domain. WN contains information
about the terms in the English language. Each term has a set of senses which
denote a meaning of a term. The UMLS however is a collection of many different
medical ontologies. Every concept has a CUI (Concept Unique Identifier) every
CUI has high level relationships linking concepts. These are PAR (Parent), CHD
(Child), RB (Broader Than), RN (Narrower Than), SIB (Sibling), RO (Other),
RL (Similar), SY (Source Asserted Synonymy), RQ (Possible Synonymy). Ev-
ery CUI is also annotated with a top level semantic type which is a high level
categorization of the CUI. A full discussion of the UMLS is beyond the scope of
this paper please see [3].

SMatch takes as input two trees and outputs a set of semantic relationships
between concepts. Please see [1] for a detailed discussion of SMatch. In step one
of their algorithm a label of a single node is taken and converted to an atomic
formula in the Description Logics (DL) sense. This string is firstly preprocessed
using normalisation and tokenization to be split into its corresponding parts.
Individual tokens are looked up in WN and the corresponding senses are attached
to create an atomic formula. Words in the English language denoting prepositions
and conjunctions are ignored and are then converted to form logical connectives.
These atomic formulae are then converted to DL based formulae. For example
the string “Brain Stem” would be converted to brain � stem. A filter is applied
according the relationships in WN to remove irrelevant senses. We firstly look up
the whole label to see if a term does exist in the UMLS. If this is not so, then we
search for tokens then we attach concepts (CUIs) from the UMLS. We also filter
according to the semantic types of CUIs and disregard any CUIs which do not
have the same semantic type. In step two a conjunction of the logical formulae to
the root node is taken from a single node. There is also structural sense filtering
performed, however this has not been implemented. Hence for the node in tree
1 which is labelled “Rhombencephalon”, the formula for this node to its root
would be (rhobenchepalon� brain stem� brain). Each of these formulae would
have corresponding CUIs attached.

In step three a variation of their WN matcher has been implemented which is
the only matcher that is able to derive semantic relationships for this step. There

200 J. Shamdasani, P. Bloodsworth, and R. McClatchey

(a) Tree1 (b) Tree2

Fig. 1. The two input trees for our results comparison

is a mapping from the higher level relationships between CUIs and the semantic
relationships which can be derived. The mappings are the following: (=) Rule
- If A is connected via SY relationship to B or if A and B share the same CUI.
(�) Rule - If a CUI of A is a PAR or RB of a CUI of B. (�) Rule - If a CUI
of A CHD or a RN of B. (⊥) Rule - If a CUI of A is a SIB of B. At the end of
this step a table of relationships is returned between concepts. If no relationship
is found then a null relation is returned. In the fourth and final step we have kept
their propositional reasoning approach to discover semantic relationships between
different nodes. For an explanation of this step please see [1].

3 Results and Conclusion

Our preliminary evaluation is a comparison of our approach with our own imple-
mentation of the original SMatch approach. We have used the 2.0 version of WN
and 2007AB version of the UMLS. Figure 1 shows our two tree inputs which are
differing conceptualisations for the parts of the brain. Tree1 (1a) and Tree2 (1b)
contain synonyms for medical terms as well as disjointness relationships between
each other for this matching task. There are more and less general relationships
present as well. The top half of table 1 shows the results from using the tradi-
tional SMatch approach using WN as a source of background knowledge and the
bottom half of table 1 shows the results from our approach using the UMLS as
a source of background knowledge. The null relationship states that there was
no match found between the concepts.

The most interesting result is that the WN approach has not been able to
discover disjointness (⊥) relationships between concepts at all. Although these
terms do occur in the WN thesaurus, this is due to no appropriate relationships
being present between the senses for these strings (antonymy) in the WN the-
saurus. However the UMLS does not explicitly state antonymy between concepts
therefore this is an interesting result. Several of the results generated by the pure
SMatch approach are incorrect, for example Cerebellum is not = to Encephalon
instead a � relationship should have been returned. Our approach does return
this relationship correctly; this is also true with many of the other results in
table 1. The SMatch approach was able to match Encephalon to Brain correctly
as they are synonymous with each other, as did our approach. But these are
very general terms in the English language, for example another synonym for

Semantic Matching for the Medical Domain 201

Table 1. These are the comparison of our results against the SMatch approach. The
top half of the table shows the results from SMatch and the bottom half shows the
results using the UMLS.

�������Tree1

Tree2
Encephalon Metencephalon Brain Stem Midbrain Hindbrain Pons Cerebellum

Brain = � � � � � �
Brain Stem � null = = = null null

Mesencephalon � null = = = null null

Rhombencephalon � null = = = null �
Cerebellum = � � � � � =

Posterior Lobe � null null null null null �
Anterior Lobe � null null null null null �

Brain = � � � � � �
Brain Stem � null = � � null null

Mesencephalon � ⊥ � = � ⊥ ⊥
Rhombencephalon � null � � = null null

Cerebellum � � null ⊥ null ⊥ =

Posterior Lobe � � null ⊥ null ⊥ �
Anterior Lobe � � null ⊥ null ⊥ �

Brain in WN is Einstein which is incorrect for the medical domain. This clearly
demonstrates that WN is a good source of lexical knowledge but not conceptual
domain knowledge which is required in the medical world. The null relation
does occur in our approach, this is mostly because this relationship could not
be found using the UMLS Metathesaurus, as the UMLS grows our approach
will yield more promising results. We also found that our predicted result for
this test was identical to the results presented in table 1. The results have been
verified by an expert in the medical domain and he was of the opinion that our
approach was correct.

In this paper we have presented a modification of the original SMatch system
for use in the medical domain. We have also shown that replacing a more gen-
eral source of background knowledge with a more specific resource yields greater
results. For our further work we are going to extend the SMatch algorithm to uti-
lize differing forms of background knowledge which may yield interesting results.
Differing reasoning schemes will also be investigated. An extensive evaluation
against real world medical ontologies will be conducted following this.

References

1. Giunchiglia, F., et al.: Semantic Matching: Algorithms and Implementation. Journal
of Data Semantics, 1–38 (2007)

2. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge
(1998)

3. Brodenreider, O.: The Unified Medical Language System (UMLS): Integrating
Biomedical Terminology. Nucleic Acids Research 32 (2004)

202 J. Shamdasani, P. Bloodsworth, and R. McClatchey

4. Euzenat, J., et al.: State of the Art on Ontology Alignment. Knowledge Web Deliv-
eriable (2.2.3) (2004)

5. Aleksovski, Z., et al.: Matching Unstructured Vocabularies using a Background
Ontology. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248,
Springer, Heidelberg (2006)

6. Sabou, M., et al.: Using the Semantic Web as Background Knowledge for Ontology
Mapping. In: International Workshop on Ontology Matching (OM-2006) (2006)

Towards the Automatic Generation of Analytical

End-User Tools Metadata for Data Warehouses�

Jesús Pardillo, Jose-Norberto Mazón, and Juan Trujillo

Department of Software and Computing Systems,
University of Alicante, Spain

{jesuspv,jnmazon,jtrujillo}@dlsi.ua.es

Abstract. Multidimensional models are used to obtain the required
database metadata for implementing the data warehouse. Surprisingly,
current approaches for multidimensional modelling overlook the neces-
sity of additional data-cube metadata to allow end-user tools to query
the data warehouse. To overcome this situation, we propose the use of
the Model Driven Architecture (MDA) in order to automatically derive
both kinds of metadata in a systematic and integrated way.

1 Introduction

A Data Warehouse (DW) is an integrated database that provides adequate in-
formation in a proper way to support decision making. The development of a
DW is based on the MultiDimensional (MD) modelling [1,2] which structures
data into facts and dimensions. The MD modelling resembles the traditional
database design methods [3] because it is structured into a variety of steps dur-
ing which a conceptual design phase is performed, whose results are transformed
into a logical data model as the basis for the implementation. Actually, once a
conceptual MD model is defined, two kinds of logical models must be derived
tailored to specific technologies: (i) a model of the DW repository which deter-
mines the required database metadata for storing data in the DW, and (ii) a
model of the data cubes which contains the necessary metadata to allow end-
user tools to query the DW repository. Surprisingly, current approaches for MD
modelling, only focus on the database metadata [3,4,5,6], thus overlooking the
derivation of datacube metadata. However, current DW tools, such as Oracle
Warehouse Builder, Pentaho Business Intelligence, or Microsoft Analysis Ser-
vices, also need the definition of these metadata to properly analyse the DW.
Therefore, the generation of end-user tool metadata is not properly integrated
in the DW development process, thus being only tackled on an ad-hoc basis.

Considering these issues, an approach for DW development must provide
mechanisms for enriching database metadata with end-user tool support in a
� This work has been partially supported by the ESPIA project (TIN2007-67078) and

by the FPU grants AP2006-00332 and AP2005-1360 from the Spanish Ministry of
Education and Science, and by the QUASIMODO project (PAC08-0157-0668) from
the Castilla-La Mancha Ministry of Education and Science (Spain).

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 203–206, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

204 J. Pardillo, J.-N. Mazón, and J. Trujillo

PIM - UML PROFILE PSM - CWM METAMODEL

DATABASE

LOGICAL

MODEL

DATACUBE

LOGICAL

MODEL

RELATIONAL

METADATA

END-USER

TOOL METADATA

- TABLE

- COLUMN

- FOREIGN KEY

...

- CUBE

- DIMENSION

- LEVEL

...

INITIAL

CONCEPTUAL

MD MODEL

CWM-COMPLIANT TOOL

Fig. 1. Deriving both database and data-cube metadata from conceptual MD models

systematic and automatic way as pointed out in [7]. For this aim, we advocate
the use of the Model Driven Architecture (MDA) for automatically deriving both
database and datacube metadata (Platform Specific Models, PSM) from concep-
tual MD models (Platform Independent Models, PIM) as shown in Fig. 1. In
our approach, we use the Unified Modelling Language (UML) [8] for specifying
conceptual MD models by using our profile [9], and the Common Warehouse
Metamodel (CWM) [8] for representing database and end-user tool metadata by
means of several standard modelling languages.

2 Automatic Generation of End-User Tool Metadata

There are several business intelligence solutions to analyse data obtained from
a DW: reporting, data mining, dashboards, and so on. In this paper, we fo-
cus on On-Line Analytical Processing (OLAP) tools since they are the founda-
tion of data analysis for DWs. We consider the automatic generation of OLAP
metadata from the conceptual MD models by extending our MDA-based ap-
proach presented in [10] for the database metadata derivation. To this aim, the
Query/View/Transformation (QVT) language [8] is used to define a set of for-
mal mappings between these modelling domains. These QVT transformations
have been implemented by using the medini QVT tool1 which is based on the
Eclipse development platform.

To exemplify our approach, we have designed a PIM for analysing automobile
sales. In Fig. 2, we show the Autosales MD model (left-hand side) which is
transformed into the corresponding CWM OLAP metadata (right-hand side) by
means of a QVT mapping (centre). The designed PIM consists of an Autosale
fact (represented as) and several dimensions (): Salespersons involved on
a sale, the sold Auto, the Dealership, the Time when the automobile is sold,
and its Customer. Concerning the last one, we can establish a useful aggregation
hierarchy (a roll-up sequence, , labelled with the same name, e.g., Standard)
based on places of residence (aggregation levels,): customers (CustomerData
level) can be aggregated into Cities, these into Regions, and finally regions into
States. Moreover, we can specify two alternative paths to simplify the entire
navigation: from customers to regions (CityAlternate) or directly from cities
to states (RegionAlternate). We describe each aggregation level with dimension
attributes (shown as), such as customer BornDate; or identifiers (), such

1 URL: http://projects.ikv.de/qvt (March 2008).

http://projects.ikv.de/qvt

Towards the Automatic Generation of Analytical End-User Tools Metadata 205

Fig. 2. Snapshot of the case study concerning automobile sales

as their own names. Moreover, we specify some analysis measures () for the
Autosale fact: Quantity of sold automobiles, their Price for sale, and their Total
amount.

In order to map the PIM into a PSM for OLAP, firstly, the Customer OLAP
dimension itself is generated and linked to the whole Autosales OLAP schema.
Then, its CustomerKey unique key is created. For every level attribute, a CWM
attribute is generated for the OLAP dimension, e.g., CityPopulation and Re-
gionName. Each descriptor is also attached to the Customer unique key. On the
other hand, as an example of OLAP level generation, we focus on the City level.
Typically, at first place, the City base in the MD model is mapped to the City
level, attaching it to Customer OLAP dimension. Then, the descriptor relation
is applied and the CityKey unique key and its CityName attribute (being part of
the key) are created. In addition, the Population attribute in the PIM is mapped
into its PSM counterpart.

Concerning the aggregation-hierarchy mapping, we only describe the Stan-
dard hierarchy. Once the Customer dimension has been mapped, the Standard
LevelBasedHierarchy is generated to represent the whole Standard aggregation
path. It is also created a UniqueKey and the HierarchyLevelAssociations re-
lated to the upper roll up: StateHLA and RegionHLA (also linked with their
corresponding levels, i.e., State and Region). Note that level associations are
ordered, from the upper bound to the lower. Thus, the StateHLA is the first

206 J. Pardillo, J.-N. Mazón, and J. Trujillo

level (i.e., the upper hierarchy level) and the RegionHLA the second one. Then,
the other level associations are also created and connected: CityHLA and Cus-
tomerDataHLA. Furthermore, the descriptors and dimension attributes in the
PIM must be mapped into their corresponding CWM attributes in the PSM.
For instance, the CustomerDataBornDate and CityPopulation attributes in the
PSM are created from the BornDate and Population dimension attributes of
CustomerData and City levels, respectively. In this case study, their data types
are omitted for the sake of simplicity.

3 Conclusions

Hitherto, no methodological approach has been proposed for the integrated de-
velopment of DWs, considering both database and data-cube metadata. In this
paper, we take advantage of using MDA to automatically derive these metadata
from conceptual MD models. It allows DW designers to focus on the high-level
description of the system instead of low-level and tool-dependent details. As
a proof of concept, our proposal has been implemented in the Eclipse open-
source platform, showing the feasibility of the automatic metadata generation
in OLAP applications from the conceptual MD modelling. Our short-term fu-
ture work consists of extending the proposed approach to consider advanced MD
properties such as fact and degenerate dimensions, also investigating about the
mapping into their logical OLAP counterparts.

References

1. Inmon, W.H.: Building the Data Warehouse. Wiley, Chichester (1996)
2. Kimball, R., Ross, M.: The Data Warehouse Toolkit. Wiley, Chichester (2002)
3. Hüsemann, B., Lechtenbörger, J., Vossen, G.: Conceptual data warehouse model-

ing. In: DMDW, p. 6 (2000)
4. Golfarelli, M., Maio, D., Rizzi, S.: The Dimensional Fact Model: A Conceptual

Model for Data Warehouses. Int. J. Cooperative Inf. Syst. 7(2-3), 215–247 (1998)
5. Abelló, A., Samos, J., Saltor, F.: YAM2: a multidimensional conceptual model

extending UML. Inf. Syst. 31(6), 541–567 (2006)
6. Prat, N., Akoka, J., Comyn-Wattiau, I.: A UML-based data warehouse design

method. Decis. Support Syst. 42(3), 1449–1473 (2006)
7. Rizzi, S., Abelló, A., Lechtenbörger, J., Trujillo, J.: Research in data warehouse

modeling and design: dead or alive? In: DOLAP, pp. 3–10 (2006)
8. Object Management Group: Catalog of Specifications, http://www.omg.org
9. Luján-Mora, S., Trujillo, J., Song, I.Y.: A UML profile for multidimensional mod-

eling in data warehouses. Data Knowl. Eng. 59(3), 725–769 (2006)
10. Mazón, J.N., Trujillo, J.: An MDA approach for the development of data ware-

houses. Decis. Support Syst. doi: 10.1016/j.dss.2006.12.003

http://www.omg.org

The Hyperdatabase Project –

From the Vision to Realizations

Hans-Jörg Schek1 and Heiko Schuldt2

1 Professor Emeritus of the Swiss Federal Institute of Technology (ETH)
Zurich, Switzerland

2 Database and Information Systems Group
Department of Computer Science, University of Basel, Switzerland

Abstract. In the future we expect an ever increasing number of data
sources, reaching from traditional databases and large document and
multimedia collections and information sources from the web, down to
embedded information sources in mobile “smart” objects as they occur
in a pervasive computing environment. Therefore not only the immense
amount of information demands new thoughts but also the number of dif-
ferent information sources and their coordination poses a great challenge
for the development of an appropriate information infrastructure. This
was the starting point for the creation of the hyperdatabase project at
ETH Zurich, almost 10 years ago. In view of this continuous, almost infi-
nite “information space” that is distributed, heterogeneous, and changes
continuously, the challenges for a new infrastructure for the information
space were the following: First, it should provide convenient tools for
accessing information via sophisticated search facilities and for combin-
ing or integrating search results from different sources. Second, the new
infrastructure should facilitate distributed application development for
analyzing and processing information. Third, transactional (workflow)
processes should ensure consistent propagation of information changes
and simultaneous invocations of several (web) services and data stream
operations. Finally, the implementation of such an infrastructure should
provide functions for recoverability, scalability, and availability by avoid-
ing central global components and by self-configuration and adaptation
features. In this paper we will elaborate some of the aspects in these
areas and report on our hyperdatabase research and experiences with
realizations in several projects such as ETHWorld. OSIRIS, PowerDB,
and Digital Libraries started at ETH and are continued at the University
of Basel.

Keywords: Middleware, Information Infrastructure, Hyperdatabases,
Transactional Process, Digital Libraries.

1 Introduction

In the following we will describe the early driving forces that led us to establish
our research vision and research directions. We first start with the situation from

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 207–226, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

208 H.-J. Schek and H. Schuldt

the database perspective, summarized from [23]. A second main influence was
clearly the demand coming from new media types such as images, audio, video
and combinations and from the Web information explosion [22,25].

1.1 The Driving Forces from a Database Perspective

Relational database systems have been introduced more than thirty years ago.
They have been considered as infrastructure and main platform for development
of data-intensive applications. The notion of “Data Independence” [11] was a
breakthrough because programmers were freed from low-level details, e.g., how
to access shared data efficiently and correctly, given concurrent access. But al-
ready in the late nineties, the prerequisites for application development have
changed dramatically. Storage and communication has become fairly cheap, and
the internet dominates modern information infrastructures. Consequently, the
role of database concepts had to be re-visited and newly determined. Undoubt-
edly, the database system has played and still plays an important role. However,
it has more and more degenerated to a storage manager, far away from the
applications. In this situation researchers at the turn of the century started to
question the role of databases for future distributed information systems engi-
neering ([34] and [1]). One conclusion was that we should rethink everything.

Beyond database systems we observed several interesting directions that were
early attempts to support application developers and users in establishing and
engineering their information systems: An important example for modern infor-
mation management is Enterprise Resource Planning as for instance realized by
SAP. We find the traditional DBMS at the storage level, but all application code
is at the middle tier in so-called application servers. Application development
is mainly the “customization” of the delivered system to the special needs of a
given application. A TP Monitor is a further example for an additional product
on top of databases and coordinates distributed databases. In a narrow definition
a TP Monitor is an operating system for transaction processing. More generally
and more recently it evolved into an infrastructure for developing and running
applications, services, and components in a three-tier architecture. Another re-
cent example for distributed application development is Workflow Management
for business applications.

The VLDB Endowment in 1998 has established a future directions group
which proposed to add “infrastructure for information systems” as the second
main direction to the VLDB Conference in order to support application devel-
opment [16].

1.2 Information beyond Databases, Information Explosion

So far we have considered the narrow field of “factual” data that are well
represented by records or tuples in relational databases. However, other fields
have evolved such us Information Retrieval, Geographical Information Systems,
image, video, audio collections in special archives or in digital libraries. They

The Hyperdatabase Project – From the Vision to Realizations 209

demand support beyond databases. In the future, as a consequence of the im-
mense progress in computer and communication technology, we expect an ever
increasing number of data sources, reaching from traditional databases and large
document and web page collections, down to embedded information sources in
mobile “smart” objects in a pervasive computing environment. Not only the
immense amount of information demands new thoughts but also the types of
different information sources and their coordination poses a great challenge for
the development of the appropriate information infrastructure. We talk about
the continuous, “infinite” information, shortly called the “information space”.
Information in this space is distributed, heterogeneous, and undergoes continu-
ous changes. Modern digital libraries, hospital information systems and patient
records are prominent examples. Tools for accessing relevant information and fur-
ther processing found information in a convenient manner are under-developed.
Search clearly must go far beyond factual data retrieval. Content-based retrieval
for images, audio or video must be combined with factual metadata and textual
keyword search. We need tools that support personalization, context sensitive
navigation, and visualization for intelligent browsing. Finally, entering queries
is often a difficult task as the users have to have some common understanding
about how the search engine works. Query by example and the usage of various
relevance feedback mechanisms must be offered as an easy-to-use methodology
to enter and to refine queries.

Another key problem with distributed information spaces, as they occur in
intranets or digital libraries, is consistency of data stored at several places in
the space. For instance, consider a query with some keyword x evaluated with
a search engine. Since the search engine computed its indexes based on recently
downloaded copies of the original data, a document d only means that it con-
tained at some point in time the keyword x. In many situations, this retrieval
quality is sufficient but it is unacceptable for applications requiring fresh results.
Analogously, replicated information in the information space has to be kept con-
sistent. For instance, an overview page with all current projects of a university
should reflect the data provided by each research group. However, since the re-
search groups may change their project data at any point in time, and often
without notifying related authorities, the overview page will soon contain out-
dated data and becomes quickly useless. Consequently, the future infrastructure
for a global information space has to provide some consistency guarantees [20].
The owner of an information space must be able to define rules how information
from several sources has to be propagated to several destinations involving in-
formation extraction, aggregation, transformation and data integration. To this
end, processes for the propagation of information have to be defined and to be
linked to events that trigger a well-defined process to be automatically executed
whenever necessary. The processes then correspond to the activities required to
provide the desired consistency guarantees.

In view of these dramatic changes and new requirements it should become
obvious that radically new thoughts and approaches for data and information
management are necessary. The objective of this paper is to present a new

210 H.-J. Schek and H. Schuldt

vision, called hyperdatabase that we started at ETH Zurich and continue at
the University of Basel, and we present resulting realizations of that vision. The
contribution of this paper is the proof that an ambitious vision – going far be-
yond databases – has been realized by various related projects. We do hope that
by this description other groups will be motivated to move their research into
the hyperdatabase direction because much more needs to be done.

The paper is organized as follows: In Section 2 we will present our vision that
we developed in view of the situation described above. Section 3, the main sec-
tion will summarize the concrete realizations of this vision. Staying more in the
realm of databases we report on the PowerDB project in Section 3.1. We continue
in Section 3.2 with the more radical departure from databases and describe our
service-oriented OSIRIS infrastructure for convenient application development.
This is followed by ISIS and DelosDLMS (Section 3.3) in which digital library
specific services for image, video, and audio retrieval and related indexing, for vi-
sualization, intelligent browsing and many more tasks are described. They have
been developed together with partners in the large European Network of Ex-
cellence project DELOS. Section 4 summarizes the paper and briefly introduces
ongoing research directions at the University of Basel.

2 The Hyperdatabase Vision

In summarizing the above observations we clearly see that functionality from
many different disciplines must be combined and made available in a new in-
frastructure. We must combine data management with document, image, video,
audio or 3D object management and retrieval. This requires document term ex-
traction, ontology lookup for query term expansion, image feature extraction,
or key frame detection from videos, just to give a few examples. Various index-
ing techniques for high-dimensional feature vectors such as the VA-file or the
M-tree must be available in order to support multi-object, multi-feature queries.
Visualization techniques by projections into the two or three-dimensional visual
space such as Fastmap or Self Organizing Maps must be provided for intelligent
browsing. These are again examples and therefore it is important to notice that
one will never be able to define a complete list of necessary functionality. For
example, new techniques for feature extraction from images will be developed
by image specialists or new audio similarity functions may become available.
Therefore, a new infrastructure must in general be extensible and adaptable to
special applications. Any time a new type of object, a new indexing technique,
or an improved feature extraction method must be added to the infrastructure
and made be available to application developers and users. This should be as
easy as adding a new object to a database.

Early attempts in the database field for an adaptation to new applications in-
clude extensible databases. Abstract data types (ADTs) extending the standard
types in a database and providing indexing techniques for these ADTs where
well-known attempts to apply databases more generally. Geometrical objects
were a good example of this direction. However, in our opinion and in view of

The Hyperdatabase Project – From the Vision to Realizations 211

the above observations and requirements, these attempts were by far too nar-
row. Therefore, at ETH we established a much more radical research vision,
called hyperdatabase research area. We departed much further from traditional
database thinking in that we tried to move up to a much higher level of abstrac-
tion. Nevertheless we called our research direction hyperdatabase in order to
express that we want to keep some important database properties that are well
understood. In the following we will explain these early thoughts. In a narrow
definition a hyperdatabase (HDB) is a database over databases1 [23]. The hyper-
database administers objects that are composed of objects and transactions that
are composed of transactions. Hence, an HDB is a database, the primitives of
which are again databases. This definition is still too narrow. In a more general
definition, a hyperdatabase infrastructure administers not only many distributed
databases but more generally distributed components and services with various
functionality in a networked environment.

Remember that data independence was the main requirement ofTed Codd when
he postulated relational databases. Now, similarly, the hyperdatabase infrastruc-
ture should provide a “higher order data independence”. This, roughly, means that
we must strive for immunity of application programs not only against changes in
storage and access structure, but also against changes in location, implementation,
workload, the number of replica of software components and their services.

What is the difference between a DB and an HDB? In a nutshell we say: a
DB is a platform for clients concurrently accessing shared data. We need data
definition, data manipulation, and transactions at the interface. The DB under
the cover performs query optimization, correctness for parallel access, recov-
ery, persistence, load balancing, availability. Similarly, an HDB is a platform for
clients, concurrently accessing shared application services. As opposed to shared
data in a DB, in an HDB we have shared components and services. At the in-
terface of an HDB we need component and service definition and description,
service customization, transactional processes encompassing multiple service in-
vocations. The HDB, under the cover, performs optimization of client requests,
routing, scheduling, and parallelization, correctness of concurrent accesses, flexi-
ble failure treatment, providing guaranteed termination (i.e., a generalized form
of atomicity), availability, flexible recovery, and scalability. Table 1 summarizes
the analogy.

Most importantly and in contrast to traditional database technology, a hy-
perdatabase infrastructure must not follow monolithic system architecture but
must be fully distributed over all participating nodes in a network. Every node is
equipped with an additional thin software layer, a so-called hyperdatabase (HDB
layer) as depicted in Figure 1. This layer extends existing layers like the TCP/IP
stack with process related functionalities. As such, the HDB layer abstracts from
service routing much like TCP/IP abstracts from data packet routing. Moreover,
while the TCP/IP protocol guarantees correct transfer of bytes, the HDB layer
guarantees the correct shipment of process instances. Ideally, this layer comes
together with the operating system much like the TCP/IP stack does.

1 Similar to a hypermatrix which is a matrix that has matrices as elements.

212 H.-J. Schek and H. Schuldt

Table 1. Analogy between a DBMS and the Hyperdatabase Infrastructure

Database Management Hyperdatabase Infrastructure

Relational schema definition Service definition and registration

Relational schema extension New service registration

Relation Service instance

Access to relation Service invocation

Query and update language Process definition language

Transaction Transactional process

ACID Guarantees Correct execution and guaranteed termination
of process

Undo operation Inverse service invocation

Redo operation Repeatable service invocation

Indexing Feature extraction and feature space organization

Query Optimization Optimal process routing

Physical Database Design Configuration Design by service allocation
and replication

Hyperdatabase Layer

Network Layer

Component
– Services
– Data
– ...

Fig. 1. Hyperdatabase Layers

3 Hyperdatabase Projects

3.1 PowerDB: Realization of the Narrow Hyperdatabase Vision

In the narrow definition a hyperdatabase is a database over databases. We fol-
lowed this idea which led us to the “PowerDB” project. The goal was to build
a high-performance database system by using as many database systems at the
bottom layer as needed in order to achieve the desired throughput. In analogy to
a computing cluster we called the set of component databases a database cluster,
i.e., a network of PCs, and each PC runs an off-the-shelf DBMS. The challenge
was to build the hyperdatabase infrastructure (PowerDB) that parallelizes and
routes queries and updates to the appropriate component databases. Ideally, a
database cluster allows for scale-out, i.e., meeting a (possibly very ambitious)

The Hyperdatabase Project – From the Vision to Realizations 213

performance objective by just adding more components to the cluster. Therefore,
PowerDB follows a three-tier architecture with a database cluster as the bottom
layer for storage management. Considering the middle tier we have focused on
two directions within PowerDB, namely XML document management and Online
Analytical Processing (OLAP) as it is used in data warehousing. In both cases we
have introduced massive replication and partitioning in order to increase query
throughput and query response times but still keeping update effort low.

PowerDB OLAP. With regard to OLAP, we have focused on the important
question how to route complex OLAP queries to appropriate components in the
cluster and how to propagate updates to the replicated databases in the clus-
ter. Ideally, users should be able to ask for OLAP results based on fresh, i.e.,
up-to-date data. The state-of-the-art techniques in 2000 did not feature such
functionality for performance reasons. Instead, OLAP warehouses were updated
on a regular – for instance, weekly – basis. Our approach instead introduced a
so-called freshness limit for the data OLAP queries operate on. A new proto-
col called FAS (short for Freshness-Aware Scheduling) ensured that the data is
updated from the OLTP node(s) of the cluster on demand. Since updates are
continuously processed at the OLTP production systems this usually requires
to update the warehouse database before processing an OLAP query. Previ-
ous work on replication management with database systems has indicated that
performance of such a setting will depend anti-proportionally of the number of
replica introduced [15]. In other words, the expectations so far have been that
performance goes down the more copies of a database have to be maintained.
Using the TPC-R benchmark, we have conducted extensive experiments with
FAS and up to 128 copies of the benchmark database. The bottom line of the
experiments is surprising and a very positive one: the overhead for replication
management with our new FAS protocol does not depend on the number of
copies. Instead, it only depends on the update workload at the OLTP produc-
tion system. This part of the project has resulted in a full prototype, and we
have conducted numerous further experiments. [21] discusses these results in
more detail, together with a more detailed description of the technical issues.

A further stream of research in the project has investigated different phys-
ical data organization schemes for efficient OLAP query processing on a clus-
ter of database systems. The objective here is to investigate partitioning of the
warehouse database across several cluster nodes with different degrees of replica-
tion at different granularities. The PowerDB middleware decomposes and routes
OLAP query into one or several subqueries. These subqueries are optimized and
processed locally at each cluster node. We investigated the trade-off between
intra-query parallelism and inter-query parallelism with a fixed number of clus-
ter nodes. This is an important issue with multi-user workloads where response
time and throughput have to be considered jointly. [4] provides a more detailed
discussion of the technical issues involved and the results. A significant improve-
ment was obtained by introducing continuous update propagation in addition to
the on-demand-refreshing as described above [6,3].

214 H.-J. Schek and H. Schuldt

PowerDB XML Documents. Regarding document management, the middle
tier (PowerDB-XML) consists of specialized components providing document-
specific processing and update services. Object transaction monitors coordinate
the database cluster and invoke document-specific components. PowerDB-XML
decomposes services and transactions of services into concurrent short database
transactions and lets them execute in the database cluster. We have demon-
strated the speedup and scale-up characteristics mentioned before for a set of
elementary services including Boolean retrieval and basic XML services, and for
more sophisticated services including search according to vector-space retrieval
[14,13]. Regarding effective retrieval on XML documents, the main innovation
is support for flexible retrieval granularities with ranked and weighted retrieval
models. This allows users to flexibly define the scopes of their queries. The infras-
tructure computes information retrieval statistics needed for result ranking and
weighting dynamically on-the-fly, i.e., at query processing time. Consequently,
users can leverage the full flexibility of XPath and XML document structures
when formulating their document-centric queries.

Furthermore, PowerDB-XML allows bundling several XML service invoca-
tions to transactions. Conventional database transaction management techniques
are not well-suited for concurrent XML processing. The reason for this is that
the locking granularity with database systems, i.e., database row or page lock-
ing, does not reflect the semantics of XML processing which deals with tree-
structured data. We therefore devised and implemented a new transaction
manager called XMLTM that runs on top of the database cluster nodes. It
follows the theory of multi-level transaction management. It relies on the under-
lying database systems at the cluster nodes as a transactional storage manager
for XML. As extensive experiments have shown, using XMLTM improves per-
formance of concurrent XML processing on a database cluster by up to an order
of magnitude as compared to a setting with database transactions only. Further-
more speedup and scale up characteristics with a cluster of database and XML
processing are convincing, and the orchestration overhead is negligible even for
large overall database sizes of more than a terabyte striped across 128 cluster
nodes. [12] provides an in-depth discussion of these results, together with a more
detailed description of the technical issues.

3.2 Transactional Processes and OSIRIS: Foundations and
Implementation of a Hyperdatabase Infrastructure

In the last years, the proliferation of service-oriented computing and in par-
ticular of Web services had a strong impact on information systems and mid-
dleware and has radically changed the way information processing takes place.
System support for the invocation of single Web services is widely available,
due to standardized protocols and formats (such as WSDL and SOAP). Beyond
these basics, the most important challenges in service-oriented computing are the
management of existing services and their evolution, the composition of existing
services into a coherent whole by means of processes, the optimization of service
requests, and reliability and correctness guarantees across service invocations.

The Hyperdatabase Project – From the Vision to Realizations 215

All these challenges need to be met by novel hyperdatabase infrastructures. In
addition, hyperdatabases need to be highly scalable so that they are able to deal
with an increasing number of services, processes, and users.

In what follows, we briefly summarize the model of transactional processes
which builds the foundation for novel hyperdatabase infrastructures and present
a concrete implementation of the full hyperdatabase vision.

Transactional Process Management. Hyperdatabases draw upon the model
of transactional processes [28] which provides process support with transactional
guarantees over distributed components using existing services as a general-
ization of traditional database transactions. Essentially, transactional processes
consider the termination semantics of the individual services they contain. Each
service is either compensatable, retriable, or pivot, following the model of flexi-
ble transactions [40]. The effects of compensatable services can be semantically
undone after the invocation has successfully returned. Retriable services are
guaranteed to terminate correctly, even if they have to be invoked repeatedly. In
this case, the last invocation succeeds while all previous invocations of this ser-
vice do not leave any effects. [27] presents a more advanced distinction between
termination classes, based on execution costs of services. Pivot services are those
that cannot be compensated, due to the lack of an inverse service, or which are
not appropriate for compensation due to their high costs.

Transactional processes contain two orders on their constituent services: a
(partial) precedence order for regular execution and a precedence order for fail-
ure handling purposes. The latter specifies alternative executions i.e., services
and the order of their execution order which will be used when the regular execu-
tion leads to a failure situation – similar to exception handlers in programming
languages.

Based on the termination guarantees of services and the two intra-process
orders, it can be verified already at built-time whether or not a process can
be executed correctly. This is the case when all failures that may occur during
execution can be resolved either by complete compensation, by partial compen-
sation until a point is reached from where an alternative execution path can
be followed (according to the preference order), or by forward recovery using
only retriable services. All services preceding the first pivot service have to be
compensatable. Each pivot service in a process (there might be several pivots
in a process) must be succeeded by at least one execution path that consists
only of retriable services, i.e., an execution path whose correct execution can be
guaranteed. According to the model of transactional processes, a process that
is correctly defined has guaranteed termination property. This means that it is
guaranteed that exactly one out of a set of possible execution paths is effected
correctly (or the effects of all services that have been invoked are completely un-
done) while all other executions paths do not leave any effects. Since guaranteed
termination allows to choose exactly one out of possibly several executions, it
extends and generalizes the well-known all-or-nothing semantics of transactions.
More details on the model of transactional processes can be found in [26].

216 H.-J. Schek and H. Schuldt

...
reyaLSIRISO reyaLSIRISO

Core O
SIR

IS Services

ssecorP
otisopeR yr

secivreS secivreS

ecivreS
yrtsigeR

A

C

P

E

R

F

...

AA BB

daoL
otisopeR yr

reyaLSIRISO

tnI e rg ita on
yawetaG

LDSW
PAOS

KK ...LL
LDSW
PAOS

LDSW
PAOS

MM

ylesooL
delpuoc

delpuocylthgiT

Fig. 2. OSIRIS Architecture

OSIRIS: A Complete Hyperdatabase Implementation. The hyperdata-
base vision of a novel infrastructure for distributed service-oriented applications
has been implemented in OSIRIS (Open Service Infrastructure for Reliable and
Integrated process Support) [32,33]. The OSIRIS platform itself does not provide
any application functionality but, by combining specialized application services,
supports the definition and reliable execution of dedicated processes, according
to the paradigm of programming in the large [39]. Thus, it can be used as
underlying infrastructure for a very wide variety of application domains. The
only prerequisite is that basic functionality of an application domain is available
via services.

OSIRIS distinguishes between system services and application services. Sys-
tem services are used internally for coordinating the execution of processes in
a distributed way, without relying on a central execution engine/scheduler. For
application services, OSIRIS further distinguishes between loosely coupled and
tightly coupled services. The hyperdatabase layer (called OSIRIS layer) runs
on each host providing application services. This is the case for tightly coupled
services. Loosely coupled application services are those that have to be called
remotely, without a local ORISIS layer available. The integration/invocation is
done via WSDL for service description and SOAP for invocation. The system
architecture of OSIRIS is depicted in Figure 2.

OSIRIS provides a high degree of scalability [31]. This is based on a decen-
tralized peer-to-peer approach for process execution [30] which considers several
global repositories as part of the system services (core OSIRIS services) and
services provided by the OSIRIS layers. While only the local OSIRIS layers
are responsible for process execution, the global repositories collect metadata
on the overall system and apply sophisticated replication mechanisms (based

The Hyperdatabase Project – From the Vision to Realizations 217

on publish/subscribe techniques) for control flow dependencies from the global
repositories to the local OSIRIS layers. At run-time, this guarantees that no
single point of failure is involved in the execution of processes. In addition, so-
phisticated load balancing is applied to distribute process load among available,
suitable service provider peers. To benefit from load balancing over different
service providers, application designers do not encode the service bindings of
activities at development time. Rather, they only specify the type or class of a
service to be invoked together with its parameters. The concrete service binding
is selected at runtime depending on the load of machines and costs of invok-
ing a particular service instance. At runtime, the OSIRIS layer selects a service
provider based on costs, parameters, and conditions on its services.

In principle, each peer of the network could replicate all process information.
However, this would require large amounts of data to be replicated over the
entire network. Rather, we only want to have all the information on a peer that
is needed to drive the execution of those process instances that potentially visit
a peer. The OSIRIS approach divides each process specification into a set of
execution units. Each execution unit contains the information to execute the
corresponding service and to navigate the process depending on the result of the
local service invocation. A peer only subscribes itself for those execution units
of processes that invoke locally available service. Consequently, the amount of
replicated data significantly reduces.

Among all core OSIRIS services, the following are the most important ones for
distributed and decentralized process execution. The Process Repository holds
the global definitions of all processes types. These types are the basis for decom-
position into execution units. The Service Registry records a list of all available
(tightly coupled) services, offered by all providers in the OSIRIS network. The
Load Repository is storing information of the current load situation of providers
in the OSIRIS network. Additionally, freshness parameters on subscriptions are
used to avoid unnecessary propagation of minor load updates.

OSIRIS’ decentralized and distributed approach to process execution is illus-
trated in Figure 3. Different service types are depicted with different shapes.
The precedence order is represented by directed edges between the services of a
process (i.e., the process on the left upper corner, whose execution is illustrated
in the center of the figure, consists of three services which are invoked sequen-
tially). The OSIRIS layer is available on top of all service providers and allows
them to make available their services to OSIRIS processes. In the center, some
of the core OSIRIS services are displayed. All these repositories are not needed
for the execution of a process. Figure 3 also shows how a process description is
divided into execution units and how these execution units are replicated to the
local OSIRIS layers (dotted lines). Finally, after replication, enough process and
service meta information is locally available to allow for peer-to-peer process
execution. In particular, when a process is instantiated and executed, the local
OSIRIS layers can decide on their own, based on locally replicated information,
where to route a request to (solid lines between OSIRIS layers). This makes sure

218 H.-J. Schek and H. Schuldt

ssecorP
yrotisopeR

daoL
yrotisopeR

yrtsigeRecivreS
P R

FC E

Services

secivreS

Se
rv

ic
es

secivreS

O
SIR

IS layer

reyalSIRISO

O
SI

R
IS

 la
ye

r

reyalSIRISO

noitacovnIssecorP noitucexEssecorP
noitacovnIecivreS

noitacilpeRatadateM

…

…

…

secivreSSIRISOeroC

ecivreS
redivorP

P

R

Fig. 3. Distributed Execution of OSIRIS Processes

that process execution takes place in a decentralized and distributed way and
guarantees a high degree of scalability.

Finally, OSIRIS is equipped with the O’GRAPE (OSIRIS GRAphical Process
Editor) [38] user interface for process definition. It allows for easy creation of
process descriptions without programming skills. In addition, O’GRAPE sup-
ports the integration of existing application services by leveraging existing Web
service standards like SOAP and WSDL.

There are two versions of OSIRIS: one has been implemented at ETH Zurich
in C++ which runs on Microsoft platforms. The other version, developed at
the University of Basel, is implemented in Java. The latter has a smaller foot-
print and can even be deployed on mobile devices. More details on the OSIRIS
architecture and its implementation can be found in [29].

3.3 ISIS and DelosDLMS: Hyperdatabase Applications for Digital
Libraries

ISIS: Services for Content-Based Search in Multimedia Collections.
ISIS (Interactice SImilarity Search) is a concrete hyperdatabase application for
information retrieval in multimedia collections [19], built on top of OSIRIS. It
supports content-based retrieval of images, audio and video content, and the
combination of any of these media types with text retrieval. Basically, ISIS con-
sists of a set of pre-defined processes and several application services (like fea-
ture extraction, index management, index access, relevance feedback, etc.) that
have been developed on the basis of the OSIRIS middleware. ISIS includes the

The Hyperdatabase Project – From the Vision to Realizations 219

Fig. 4. ISIS Search Process including Relevance Feedback in O’GRAPE

VA-file [37], a sophisticated index structure for similarity search, which is par-
ticularly well suited for high-dimensional vector spaces. It also provides basic
support for relevance feedback and visualization.

One of the main considerations in designing ISIS was to ensure high scalability
and flexibility. Therefore, instead of implementing one monolithic application,
ISIS consists of a set of specialized application services for similarity search which
are combined using processes. The ISIS services can be easily distributed among
several nodes in a network [36].

Figure 4 shows a sample process, shown in the design view of OSIRIS’ O’
GRAPE tool, which implements the refinement of a user query based on rel-
evance feedback. The process specification just contains the details of all ap-
plication services it encompasses (e.g., WSDL description) and their orders of
invocation within the process. The actual service providers where the service
is invoked are determined at run-time. Hence, each step of the process can be
executed by any node providing the required service. After issuing the query a
first time, a user can refine and re-issue her query. The query process (including
user feedback) as depicted in Figure 4 consists of the steps Query Reformula-
tion (based on relevance feedback the user has issued), Query Execution (index
access), and Result Filtering (which may again take user feedback into account).

The process-based approach to application development also allows the defi-
nition of multi-object multi-feature queries, i.e., content-based similarity queries
using different query objects and of possibly different types, and thus several
services for index access.

ISIS has been successfully applied to the ETHWorld project, the virtual cam-
pus of ETH Zurich. It allows to effectively and efficiently search in several

220 H.-J. Schek and H. Schuldt

D
el

os
D

LM
S

SISI
)eliF-AV(

SIRISO
)ytilibaileR&sessecorP(

segamI oiduAD3 trA
yrellaG BDMIreccoS

soediV oediV

lidoffaD

ytilanoitcnufSMLDsoleD
ecivressa

siVoideM

ERAD
repaPi

ylesooL
delpuoc

noitatonnA

aMoCoC

ylesooL
delpuoc

… hceeps

ygolotno

oediV

reccos

oediV
xednI

oiduA

oiduA
xednI

D3
xednI

D3MOSsegamI

egamI
secidnI

FR
RBC

hceepS

yreuQ
noisnapxE

-oeahcrA
lacigol

seigolotnO noitazilanosreP secafretnIresU&noitazilausiV

Fig. 5. DelosDLMS – Architecture & Functionality

large-scale image, audio, and video collections, the largest of them being a collec-
tion of more than 600’000 images which have been extracted from ETH websites.

More details on ISIS and in particular on content-based similarity search over
multimedia collections can be found in [35] and [18].

DelosDLMS: A Next Generation Digital Library Management System.
The overall goal of the DelosDLMS is the implementation of a next genera-
tion digital library management system, which shows how text and audio-visual
search functionality can be combined, which offers personalized browsing us-
ing new information visualization and relevance feedback tools, which allows
annotation and processing of retrieved information, which integrates and pro-
cesses sensor data stream, and finally, from a systems engineering point of view,
which allows simple configuration and adaptation while being reliable and scal-
able [2,24]. DelosDLMS has been built in a joint effort of members of the DE-
LOS Network of Excellence in Digital Libraries2, funded by the EU in its 6th

framework program. It shows a very wide variety of digital library functionality
available as services provided by the DELOS partners which has been integrated
into the OSIRIS/ISIS hyperdatabase infrastructure.

Figure 5 illustrates the DelosDLMS system and the wide variety of digital
library functionality it provides to its users “out of the box”. Most of the new
services have been integrated in a loosely-coupled way, i.e., as Web services. Fol-
lowing the hyperdatabase concept, complete and sophisticated DL applications
can be built starting from this collection of basic services by defining digital
library processes. Table 2 summarizes all the digital library services DelosDLMS
provides together with the DELOS partners which have contributed these ser-
vices. Essentially, these services can be classified into six categories. DelosDLMS
includes various generic multimedia Content & Collection Management Services,
and Search Support Services to enable efficient metadata and content-based
indexing and retrieval. In addition, DelosDLMS features Annotation Manage-
ment Services, that provide extensive support for annotating content, including
2 http://www.delos.info

The Hyperdatabase Project – From the Vision to Realizations 221

Table 2. DelosDLMS Functionality and Contributors

DelosDLMS Functionality Contributors

Hyperdatabase Infrastructure (OSIRIS) University of Basel (ETH Zurich)

Content-based similarity search (ISIS) University of Basel (ETH Zurich)

Self-Organizing Map Visualization University of Konstanz

3D Feature Extraction & Similarity Search University of Florence

Audio Feature Extractors Vienna University of Technology

Semantic Video Retrieval Technical University of Crete &
University of Florence

Speech Interface Technical University of Crete

Ontologies & Query Expansion University of Glamorgan &
Technical University of Crete

Annotation Management University of Padua

Personalization University of Athens

iPaper Interface ETH Zurich

MedioVis User Interface University of Konstanz

DARE User Interface University of Rome ‘La Sapienza’

Daffodil – Federated Search in DLs University of Duisburg-Essen

annotation sharing to support collaborative environments. Furthermore, a set of
User Query Support Services improves the user experience during searches, al-
lowing query expansion based on controlled vocabularies, incremental refinement
of query results, and personalized interaction with the system. Advanced Visu-
alization Services offer a powerful alternative to the classical display of query
results and also allow to visualize, browse and analyze in an effective way en-
tire collections. Finally Non-standard UI Support Services give the possibility to
interact with DL applications through non-traditional input-output devices.

In summary, DelosDLMS has been a nice showcase for the hyperdatabase vision
and in particular for the high potential of hyperdatabase infrastructures in acting
as the basic underlying infrastructure for a powerful, yet easy to extend, adapt and
configure environment for the management of large-scale information spaces.

4 Conclusion and Outlook

The hyperdatabase concept has been introduced as reaction to the rapidly grow-
ing information spaces which contain information of different formats (such as,
for instance, images, audio, video and combinations of these) and from different
distributed sources. This information might even be subject to frequent changes
and complex interdependencies.

The main objective of the hyperdatabase vision is to apply database system
concepts outside of databases, especially in modern information systems which
follow a three- or multi-tier architecture. This is based on a notion of higher or-
der data independence, i.e., the independence of of application programs against
changes in location, implementation, workload, the number of replica of software

222 H.-J. Schek and H. Schuldt

components and their services. In that sense, the hyperdatabase is a platform for
clients that concurrently access shared application services. In this environment,
the hyperdatabase has to optimize client requests (i.e., service invocations), to
route and parallelize these requests and to guarantee the correctness of concur-
rent accesses to shared services.

Over the last ten years, the hyperdatabase vision has been implemented, ex-
ploited, and evaluated in a large variety of applications. The resulting systems
such as PowerDB, OSIRIS, and ISIS have demonstrated the potential and ad-
equateness of the hyperdatabase vision. In some applications, for instance in
DelosDLMS, where these systems have been used in very demanding large-scale
applications, they have strikingly passed the test of time.

Nevertheless, the systems we have presented in this paper do not cover the
full hyperdatabase vision. Rather, they all focus on and realize selected parts
of the vision. In addition, the hyperdatabase vision is not static but needs to
evolve with the ongoing advancements and new trends in large-scale, distributed
multimedia information spaces. In what follows, we conclude with a brief sum-
mary of current projects at the University of Basel which aim at taking this
evolution into account by addressing novel challenges that are stemming from
recent trends and developments.

Grid Data Management & Replication. Grid infrastructures are becoming more
and more important, especially for data intensive applications (Data Grids).
In particular, the almost unlimited storage resources of a Data Grid allow the
replication of data and services across many potentially heterogeneous Grid
nodes. This project aims at extending and generalizing replication protocols
from PowerDB and applying them at Grid scale [5]. It includes the dynamic
generation and removal of replicas based on the current load of the system, the
distinction between updateable and read-only copies, the consideration of the
special characteristics of data objects (some might be mutable, some others im-
mutable so that a write access creates a new version of the object), etc. All
this needs to be done by taking into account the distributed nature of the Grid
which does not allow for any global component that guarantees serializability of
concurrent accesses to several replicas.

Data Stream Management. The proliferation of sensor technology, especially in
the context of embedded systems, has brought forward novel types of applica-
tions that make use of streams of continuously generated sensor data. Many
applications like telemonitoring in healthcare particularly require reliable data
stream management. This is even more important when data stream manage-
ment applications are deployed in a failure-prone distributed setting including
resource-limited mobile devices. In this project, we extend the hyperdatabase
vision in two ways. First, by allowing to integrate mobile devices into a hy-
perdatabase network which requires an HDB implementation that comes with
a small system footprint. Second, by extending the hyperdatabase vision from
discrete service invocations in a request/reply style to the reliable processing of
continuous streams of data [8,9].

The Hyperdatabase Project – From the Vision to Realizations 223

Advanced Resource Reservation for Scientific Workflows. Many applications in
eScience encompass a large number of highly sophisticated, resource intensive
services which need to be integrated into processes or workflows [10]. Especially
when these processes need to be executed with dedicated quality-of-service (QoS)
guarantees (e.g., predefined response times), the resources required to execute
a process in an optimal way must be reserved in advance (e.g., CPU share).
In this project, we aim at providing an infrastructure for QoS-aware scientific
workflows by addressing mechanisms for negotiating service level agreements for
advanced resource reservation, for enforcing guarantees which have been subject
to negotiations, and for dynamically adjusting resource reservations.

Context-Awareness & Semantics. At present, process-based applications are
mostly defined by human experts. With the advent of semantic (Web) services,
however, functionality comes along with a formal specification of their seman-
tics [7,17]. This allows the application of advanced mechanisms for automatically
creating ad hoc processes. In particular when considering the current context
(e.g., location) of a user or her individual preferences, personalized process-based
applications can be either newly created or existing ones can be automatically
adapted. This project addresses the customizaiton and generation of processes
using semantic Web services, the verification of these processes and their reliable
distributed execution.

References

1. Abiteboul, S., Agrawal, R., Bernstein, P.A., Carey, M.J., Ceri, S., Croft, W.B.,
DeWitt, D.J., Franklin, M.J., Garcia-Molina, H., Gawlick, D., Gray, J., Haas,
L.M., Halevy, A.Y., Hellerstein, J.M., Ioannidis, Y.E., Kersten, M.L., Pazzani,
M.J., Lesk, M., Maier, D., Naughton, J.F., Schek, H.-J., Sellis, T.K., Silberschatz,
A., Stonebraker, M., Snodgrass, R.T., Ullman, J.D., Weikum, G., Widom, J.,
Zdonik, S.B.: The Lowell Database Research Self-Assessment. Communications
of the ACM 48(5), 111–118 (2005)

2. Agosti, M., Berretti, S., Brettlecker, G., Bimbo, A.D., Ferro, N., Fuhr, N., Keim,
D.A., Klas, C.-P., Lidy, T., Milano, D., Norrie, M.C., Ranaldi, P., Rauber, A.,
Schek, H.-J., Schreck, T., Schuldt, H., Signer, B., Springmann, M.: DelosDLMS
– The Integrated DELOS Digital Library Management System. In: Thanos, C.,
Borri, F., Candela, L. (eds.) Digital Libraries: Research and Development. LNCS,
vol. 4877, pp. 36–45. Springer, Heidelberg (2007)

3. Akal, F.: Replication in a Database Cluster with Freshness and Correctness Guar-
antees. PhD Thesis, ETH Zurich (2007)

4. Akal, F., Böhm, K., Schek, H.-J.: OLAP Query Evaluation in a Database Cluster:
A Performance Study on Intra-Query Parallelism. In: Manolopoulos, Y., Návrat,
P. (eds.) ADBIS 2002. LNCS, vol. 2435, pp. 218–231. Springer, Heidelberg (2002)

5. Akal, F., Schuldt, H., Schek, H.-J.: Toward Replication in Grids for Digital Libraries
with Freshness and Correctness Guarantees. Concurrency and Computation: Prac-
tice and Experience 19(16) (November 2007)

224 H.-J. Schek and H. Schuldt

6. Akal, F., Türker, C., Schek, H.-J., Breitbart, Y., Grabs, T., Veen, L.: Fine-Grained
Replication and Scheduling with Freshness and Correctness Guarantees. In: Pro-
ceedings of the 31st International Conference on Very Large Data Bases, Trond-
heim, Norway, August 2005, pp. 565–576 (2005)

7. Bergenti, F., Cáceres, C., Fernández, A., Fröhlich, N., Helin, H., Keller, O., Kin-
nunen, A., Klusch, M., Laamanen, H., Lopes, A., Ossowski, S., Schuldt, H., Schu-
macher, M.: Context-aware Service Coordination for Mobile e-Health Applications.
In: Proceedings of the European Conference on eHealth (ECEH 2006), Fribourg,
Switzerland, October 2006, pp. 119–130 (2006)

8. Brettlecker, G., Schuldt, H.: The OSIRIS-SE (Stream-Enabled) Infrastructure for
Reliable Data Stream Management on Mobile Devices. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, Beijing, China, June
2007, pp. 1097–1099. ACM Press, New York (2007)

9. Brettlecker, G., Schuldt, H., Schek, H.-J.: Efficient and Coordinated Checkpointing
for Reliable Distributed Data Stream Management. In: Manolopoulos, Y., Pokorný,
J., Sellis, T.K. (eds.) ADBIS 2006. LNCS, vol. 4152, pp. 296–312. Springer, Hei-
delberg (2006)

10. Candela, L.,Akal, F.,Avancini,H.,Castelli,D., Fusco, L.,Guidetti,V., Langguth,C.,
Manzi, A., Pagano, P., Schuldt,H., Simi, M., Springmann,M., Voicu, L.: DILIGENT:
Integrating Digital Library and Grid Technologies for a new Earth Observation Re-
search Infrastructure. International Journal on Digital Libraries 7(1-2), 59–80 (2007)

11. Codd, E.F.: The Capabilities of Relational Database Management Systems. IBM
Research Report, San Jose, California, RJ3132 (1981)

12. Grabs, T.: Storage and Retrieval of XML Documents with a Cluster of Database
Systems. PhD Thesis, ETH Zurich (2003)

13. Grabs, T., Böhm, K., Schek, H.-J.: High-level Parallelism in a Database Cluster:
A Feasibility Study Using Document Services. In: Proceedings of the 17th Interna-
tional Conference on Data Engineering (ICDE 2001), Heidelberg, Germany, April
2001, pp. 121–130. IEEE Computer Society Press, Los Alamitos (2001)

14. Grabs, T., Böhm, K., Schek, H.-J.: PowerDB-IR – Information Retrieval on Top of
a Database Cluster. In: Proceedings of the 2001 ACM CIKM International Confer-
ence on Information and Knowledge Management, Atlanta, Georgia, USA, Novem-
ber 2001, pp. 411–418. ACM Press, New York (2001)

15. Gray, J., Helland, P., O’Neil, P.E., Shasha, D.: The Dangers of Replication and a
Solution. In: Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data, Montreal, Quebec, Canada, June 1996, pp. 173–182. ACM
Press, New York (1996)

16. Gray, J., Mylopoulos, J., Schek, H.-J.: Future Directions of Database Research —
Changes in the VLDB Conference PC Structure (1999),
http://www.vldb.org/future.html

17. Lopes, A., Costa, P., Bergenti, F., Klusch, M., Blankenburg, B., Möller, T., Schuldt,
H.: Context-aware Secure Service Composition Planning and Execution on E-
Health Environments. In: Proceedings of the European Conference on eHealth
(ECEH 2006), Fribourg, Switzerland, October 2006, pp. 179–190 (2006)

18. Mlivoncic, M.: Efficient Evaluation Techniques for Complex Similarity Queries on
Large Media Collections. PhD Thesis, ETH Zurich (2006)

19. Mlivoncic, M., Schuler, C., Türker, C.: Hyperdatabase Infrastructure for Manage-
ment and Search of Multimedia Collections. In: Proceedings of the Sixth Thematic
Workshop of the EU Network of Excellence DELOS: Digital Library Architectures
– Peer-to-Peer, Grid, and Service-Orientation, S. Margherita di Pula, Cagliari,
Italy, June 2004, pp. 25–36. Edizioni Libreria Progetto, Padova (2004)

http://www.vldb.org/future.html

The Hyperdatabase Project – From the Vision to Realizations 225

20. Pu, C., Schwan, K., Walpole, J.: Infosphere Project: System Support for Informa-
tion Flow Applications. SIGMOD Record 30(1), 25–34 (2001)

21. Röhm, U.: Online Analytical Processing with a Cluster of Databases. PhD Thesis,
ETH Zurich (2002)

22. Schek, H.-J.: The Hyperdatabase Network – New Middleware for Searching and
Maintaining the Information Space. In: Vojtáš, P., Bieliková, M., Charron-Bost, B.,
Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 42–46. Springer, Heidelberg
(2005)

23. Schek, H.-J., Böhm, K., Grabs, T., Röhm, U., Schuldt, H., Weber, R.: Hyper-
databases. In: Proceedings of the First International Conference on Web Informa-
tion Systems Engineering (WISE 2000), Hong Kong, China, June 2000, pp. 14–25.
IEEE Computer Society Press, Los Alamitos (2000)

24. Schek, H.-J., Schuldt, H.: DelosDLMS – Infrastructure for the Next Generation of
Digital Library Management Systems. ERCIM, Special Issue on European Digital
Library (66) (July 2006)

25. Schek, H.-J., Schuldt, H., Weber, R.: Hyperdatabases: Infrastructure for the In-
formation Space. In: Proceedings of the Sixth IFIP Working Conference on Visual
Database Systems (VDB 2002), Bisbane, Australia, May 2002, pp. 1–15. Kluwer,
Dordrecht (2002)

26. Schuldt, H.: Transactional Process Management over Component Systems. PhD
Thesis, ETH Zurich (2000)

27. Schuldt, H.: Process Locking: A Protocol based on Ordered Shared Locks for the
Execution of Transactional Processes. In: Proceedings of the 20th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 2001),
Santa Barbara, CA, USA, May 2001, ACM, New York (2001)

28. Schuldt, H., Alonso, G., Beeri, C., Schek, H.-J.: Atomicity and Isolation for Trans-
actional Processes. ACM Transactions of Database Systems (TODS) 27(1), 63–116
(2002)

29. Schuler, C.: Distributed Peer-to-Peer Process Management – Realization of a Hy-
perdatabase. PhD Thesis, ETH Zurich (2004) (in German)

30. Schuler, C., Schuldt, H., Türker, C., Weber, R., Schek, H.-J.: Peer-to-peer Execu-
tion of (Transactional) Processes. International Journal on Cooperative Informa-
tion Systems 14(4), 377–406 (2005)

31. Schuler, C., Türker, C., Schek, H.-J., Weber, R., Schuldt, H.: Scalable Peer-to-
Peer Process Management. International Journal of Business Process Integration
and Management (IJBPIM) 1(2), 129–142 (2006)

32. Schuler, C., Weber, R., Schuldt, H., Schek, H.-J.: Peer-to-Peer Process Execution
with OSIRIS. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.P., Yang, J.
(eds.) ICSOC 2003. LNCS, vol. 2910, pp. 483–498. Springer, Heidelberg (2003)

33. Schuler, C., Weber, R., Schuldt, H., Schek, H.-J.: Scalable Peer-to-Peer Process
Management – The OSIRIS Approach. In: Proceedings of the IEEE International
Conference on Web Services (ICWS 2004), San Diego, CA, USA, June 2004, pp.
26–34. IEEE Computer Society Press, Los Alamitos (2004)

34. Silberschatz, A., Zdonik, S.B.: Database Systems - Breaking Out of the Box. SIG-
MOD Record 26(3), 36–50 (1997)

35. Weber, R.: Similarity Search in High-Dimensional Vector Spaces. PhD Thesis, ETH
Zurich (2000)

36. Weber, R., Bolliger, J., Gross, T.R., Schek, H.-J.: Architecture of a Networked
Image Search and Retrieval System. In: Proceedings of the 1999 ACM CIKM In-
ternational Conference on Information and Knowledge Management, Kansas City,
Missouri, USA, November 1999, pp. 430–441. ACM Press, New York (1999)

226 H.-J. Schek and H. Schuldt

37. Weber, R., Schek, H.-J., Blott, S.: A Quantitative Analysis and Performance Study
for Similarity-Search Methods in High-Dimensional Spaces. In: Proceedings of 24th
International Conference on Very Large Data Bases (VLDB 1998), August 1998,
pp. 194–205. Morgan Kaufmann, San Francisco (1998)

38. Weber, R., Schuler, C., Neukomm, P., Schuldt, H., Schek, H.-J.: Web Service Com-
position with O’GRAPE and OSIRIS. In: Aberer, K., Koubarakis, M., Kalogeraki,
V. (eds.) VLDB 2003. LNCS, vol. 2944, pp. 1081–1084. Springer, Heidelberg (2004)

39. Wiederhold, G., Wegner, P., Ceri, S.: Toward Megaprogramming. Commununica-
tions of the ACM 35(11) (1992)

40. Zhang, A., Nodine, M.H., Bhargava, B.K.: Global Scheduling for Flexible Trans-
actions in Heterogeneous Distributed Database Systems. IEEE Transactions on
Knowledge and Data Engineering (TKDE) 13(3), 439–450 (2001)

From Schema and Model Translation

to a Model Management System

Paolo Atzeni, Luigi Bellomarini, Francesca Bugiotti, and Giorgio Gianforme

Dipartimento di informatica e automazione
Università Roma Tre

{atzeni}@dia.uniroma3.it,
{bellomarini,bugiotti}@yahoo.it,

{giorgio.gianforme}@gmail.com

Abstract. Model management addresses problems dealing with forms
of collaboration among heterogeneous databases. This collaboration may
include exchange of data, schema integration, synchronization, transla-
tion and, in general, any issue characterized by a data evolving scenario.
It provides a structured framework allowing standard solutions to data
programmability problems in terms of the application of some recurring
operators. The main mid-term target in this field is the definition of
a model management system, a software platform providing the data
architect with a complete set of tools addressing a wide spectrum of pos-
sible problems. In this paper we recall MIDST, a platform that works as
an applicator of schema transformations. It was firstly conceived to per-
form model-independent schema and data translation. Then it has been
extended to an applicator of general schema transformations including
model management operators. Leveraging on MIDST rich representation
of models, schemas and data based on a metalevel approach, we reason
about potentialities and possible developments of this platform with the
target of laying the basis for a real runtime model management system.

Keywords: model management, model management system, model-
independent schema and data translation, data programmability.

1 Introduction

The management of heterogeneous databases, in integrated or collaborative con-
texts, always involves the need for solutions to data programmability issues. In
general, data programmability addresses problems dealing with evolving scenar-
ios: changes in a database which collaborates in a heterogeneous environment
often implies a sequence of propagating changes in related databases at any level,
model, schema and data [8,13,14]. Heterogeneity means that on the one hand
systems are developed by different people, fostering different data models and
technologies; on the other hand it recalls problems involving different software
components using shared and interoperating data.

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 227–240, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

228 P. Atzeni et al.

Moreover, business requirements which guided the design of the data model
are not static but change in time, leading to an intensive refactoring, redefinition
and migration of data. This even complicates data programmability, opening to
a range of further problems including change propagation, synchronization, data
exchange, integrity constraint satisfaction, data provenance memorizing and so
on [7,6].

Model management provides a structured framework to encompass all these
problems and establishes standard solutions based on the application of a finite
set of operators [7].

There is the tendency to recognize the need for a model-independent solu-
tion to model management problems. Our approach had been pursuing model-
independent schema and data translation [3,5,22,24] and led to the platform
MIDST [3,4]. It was originally conceived only as an implementation of the
modelgen operator (the one responsible for schema translation), but to a wider
extent MIDST can be now considered as a general purpose applicator of schema
transformations. By proposing a model-independent but model-aware definition
and implementation of most common model management operators, we are work-
ing on a blueprint for standard solutions to recurring problems such as round-trip
engineering and forward engineering [1]. These solutions refer to an off-line ap-
proach and not to a real runtime environment in which they are actually needed.

In the perspective of turning MIDST into a real model management system
(MMS) [8], providing the data architect with a complete suite of tools to cope
with data programmability problems in a real runtime context, here we address
the main challenges in this migration.

We focus on the major scenarios where MIDST may be applied, as well as on
the complementary issues that such a change of perspective raises. We underline
how MIDST metalevel representation of models and schemas supports mean-
ingful potentialities. We show how the main challenges can be either directly
addressed by the platform, or faced through appropriate extensions that benefit
from the metalevel expressivity.

We discuss the application of MIDST to the handling of evolving scenar-
ios. Hence we explain possible approaches towards problems such as update
propagation, schema synchronization and data exchange: reasonings about how
model-independent solutions to simpler problems can be combined and success-
fully applied to these situations are provided. Complementary problems and
refinements providing the data with higher quality are described as well. Spe-
cial attention is devoted to data provenance treatment and integrity constraint
handling, where MIDST metalevel expressivity is particularly effective.

Reasonings dealing with a concrete and advanced application of the framework
to an object-oriented scenario is provided. We introduce a possible development
of the platform, enabling a transparent handling of object-oriented structures.

The remainder of the paper is organized as follows. In Section 2 we describe
the approach to data model handling used by MIDST; in Section 3 we outline the
fundamental challenges in turning MIDST into a real MMS; in Section 4 and 5
we introduce some data programmability issues that can be addressed exploiting

From Schema and Model Translation to a Model Management System 229

MIDST metalevel potentialities; Section 6 illustrates an object-oriented scenario;
finally Section 7 concludes the paper.

2 Background

In previous papers [3,4] we proposed MIDST, a platform for model-independent
schema and data translation. The framework is based on the fundamental ob-
servation that any existing data model can be represented with a finite set of
constructs [17]. Therefore MIDST handles a metamodel allowing the definition
of general purpose constructs called metaconstructs. They are then used to as-
semble models, meaning that a model is thus defined as a collection (a subset) of
all the existing metaconstructs. Schemas are consequently defined with respect
to the model they belong to and have concrete constructs which inherit their
properties from the metalevel.

Metaconstructs are characterized by a unique identifier (OID), a defining
name, a set of properties coding details of interest and a set of references re-
lating them to one another. Graphs of interrelated constructs build a model.
For example we have a construct named abstract which models any “abstract”
conceptual entity, such as objects (of the object-oriented model), entities (of the
ER model), and so on. MIDST also manages aggregations which are constructs
representing table-like entities (like tables in the relational model). Instead a lex-
ical is a metaconstruct representing a lexical value independently of the model of
interest. Then, whereas an abstract is simply characterized by its name, a lexical
also has some defining properties such as whether it is identifier or not, whether
it is nullable or not and so forth. We emphasise that many constructs are re-
lated to other constructs: an example is the lexical which can be linked either
to an abstract (coding for example an attribute of entity) or to an aggregation
(representing a relational column) by means of typed references.

The metalevel is implemented by means of a multilevel relational dictionary
[2] which models all the mentioned concepts as relational tables: metaconstructs,
properties and references.

Another important concept in MIDST is that of supermodel : it represents the
most general model, including all the possible metaconstructs. Hence any other
model is a specialization of it. The supermodel is the component that actually
allows the model-independent schema translation that can be formulated in three
phases: the schema (instance of the source model) is copied into the supermodel;
a translation into the target model takes place in this environment; the result
schema is finally downcast into the destination model. Translations are specified
by means of datalog rules defined over MIDST metaconstructs.

3 Towards an MMS

3.1 Model-Independent Operators

MIDST was conceived in order to provide an implementation of modelgen, the
operator responsible for schema translation. More formally, given a schema S1

230 P. Atzeni et al.

of a model M1 and a target model M2, modelgen computes a schema S2 of
model M2 which corresponds to S1. The translation process may be divided into
two phases: the first one where the appropriate datalog translation rule is chosen
and the second one, where the manipulations are actually performed.

We are currently working on the extension of this platform [1] to implement
most important model management operators. In fact we can consider a datalog
translation rule as a general transformation that can be applied to schemas. As
a consequence, MIDST can be thought of as a platform capable of performing
transformations that are not necessarily translations, but general model man-
agement operators.

These operators are coded with datalog rules, expressingmanipulations directly
in terms of the metaconstructs. This implies that they do not depend on the spe-
cific model of application. In particular, these datalog rules can be written to im-
plement the diff and the merge operator: the first one computes the difference
between two given schemas, while the second one performs a set-oriented union.

The general datalog implementation of the operators is composed of two phases.
The first one works out the correspondences among the constructs of the source
schemas. Then the second performs the specific operations. The diff, given two
input schemas, copies into the target all the constructs belonging to the first, but
not to the second one on the basis of the computed correspondences. Similarly, the
merge copies into the target schema the constructs of both the source schemas;
it uses the correspondences in order to avoid duplicates in the result.

Moreover the operators can be automatically generated from the currently
available supermodel. We have a procedure that detects all the possible con-
structs and their relationships by interacting with the metalevel, and thus gen-
erates globally valid operators.

Solutions to most common model management problems can be expressed as
scripts composed of a sequence of operators. Indeed, MIDST can be currently
used to provide an off-line solution to some important problems such as forward
engineering and round-trip engineering. As for the former, given a specification
schema S1 and an implementation schema I1 which derives from S1, changes in
S1 leading to a modified specification S2 have to propagate to I1 in order to
obtain a coherently modified implementation I2. Instead, as for the round-trip
engineering: given a specification schema S1 and an implementation schema I1

which derives from S1, changes in I1 leading to a modified implementation I2

have to propagate backwards to S1 in order to obtain a coherently modified
specification S2.

Moving from Bernstein’s solving procedures [7], we can build scripts for the
cited problems in terms of the diff, merge, modelgen and in some sense
match operators.

3.2 Larger Scale and Complementary Issues

Solutions to model management problems are built in terms of scripts involv-
ing the application of several operators. Indeed, this is still a simplified ver-
sion of what is actually needed in a concrete application context. In that wider

From Schema and Model Translation to a Model Management System 231

perspective, issues are composed of sets of elementary model management prob-
lems whose solutions have to be coordinated.

We may consider several levels of abstraction: model management operators
(such as diff and merge) belong to the lowest one, then we have simple prob-
lems (such as forward and round-trip engineering) with solutions in terms of
simple operators; the top level contains more complex scenarios, such as ETL
processes, whose solutions can be obtained only by coordinating procedures ad-
dressing simpler problems. Therefore, the ability to solve model management
problems by building scripts in terms of simple operators is only the first re-
quirement of an MMS, it is only the implementation of the lowest abstraction
level. A meaningful MMS must cope with every level and then allow for high-
abstraction environments that coordinate several model management problems.

This might seem only a change of scale issue, however it also raises collateral
requirements and complementary problems that must be separately faced. Some
examples of these issues include: the need for information about the provenance
of data; a coherent handling of integrity constraints; a fine-grained access control;
an efficient indexing mechanism for the data sources; triggers and business logic
integration.

Besides, there are several quality requirements a real MMS should also con-
sider: first of all runtime support but also availability, supportability, perfor-
mance, security. As far as quality requirements are concerned, we can assume
that in a research project they do not represent the riskiest element, in fact a
good architectural definition phase can cope with them, leading to the design of
the appropriate components.

However a simple off-line characterization of model management problems,
although within a well-designed architecture, is not functionally sufficient. In-
deed, MIDST currently implements the lowest abstraction layer, so it represents
the first phase of the development of a real MMS.

Our aim is to discuss the most meaningful issues in the process of turning
MIDST into a full-featured MMS. Hence in the following section we deal with
some larger-scale problems to exemplify our approach; moreover we give details
about possible directions to address complementary requirements.

4 Handling Evolving Scenarios

Evolving scenario problems [8] subsume issues dealing with changes performed
over some given schemas or instances. In general, changes imply a complex net
of propagations updating a set of interrelated databases.

Update propagation problems can be considered as a generalized and runtime
extension of the forward engineering, involving that a change on a given database
leads to modifications in another one. From a technological point of view, whereas
currently MIDST solves the round-trip and forward engineering with respect to
imported schemas (and hence off-line), this problem needs an on-line binding of
two schemas so as to propagate changes during the execution.

A more complete definition of such a problem is schema synchronization which
actually involves a propagation of the changes between two schemas in both

232 P. Atzeni et al.

directions. It may be worked out by MIDST either with a reversed application
of the forward engineering solving script, or through the application of it in the
one direction and by the use of round-trip in the other.

Peer to peer mappings define a net of databases whose schemas are inter-
related. Therefore changes on one schema induce a chain of possibly different
modifications in other schemas. This problem can be dealt with by MIDST as
well: the core point is the definition of relations between databases (mappings)
that can be directly applied to target schemas; it is important to point out that
MIDST already solves something similar when performs a chain of schema trans-
lations. Beacause of the general treatment of transformations, such an approach
may be suitable in this context as well.

Data exchange problem is aimed at transforming a mapping between two
schemas into a directly executable query actually moving data. With respect to
this problem, MIDST paradigm supports advantageous preconditions [8]: only
relational schemas are treated and the mappings are conjunctive queries. In
fact here a relational meta-representation of any model is possible due to the
dictionary generality, besides we use datalog mappings that are declarative rules
in the form of conjunctive queries.

However, some remarkable issues in facing these problems are still open. In
the general solution to round-trip and forward engineering provided by MIDST,
we assume a substantial coincidence between schema and data evolution. It
means that modifications between two different databases are mainly schema-
driven. The migration of instances is handled as a consequence of the evolution of
schemas. Datalog rules defining manipulations on the schemas are syntactically
translated into transformations on the corresponding instances.

It implies that if a logical coherence between them exists, then operators
correctly perform; otherwise the tight coupling between the two levels could
become a drawback. In addition there are problems, such as data exchange,
that are specifically instance-oriented. In both the cases we need to loosen that
coupling.

The schema-instance coupling problem is closely related to representing map-
pings. Many model management operators need information about schema corre-
spondences in order to operate on them. For instance a difference operator must
know those matches in order to correctly subtract constructs. In our platform,
we do not currently handle an explicit representation of mappings. We move
from a unique name assumption stating that metaconstructs with equal lexical
properties are equal themselves. Under this assumption, model management op-
erators perform a hierarchical comparison between input schemas in order to
correctly treat them.

Again, this outlines the fact that our operators are schema oriented. Certainly
it is a remarkable strength of the approach, providing generality thanks to the
model-independent approach. Yet when data-oriented problems are faced or the
treatment desired for instances differs from the one wanted for schemas, the need
for some kind of decoupling arises.

From Schema and Model Translation to a Model Management System 233

One solution may involve the adoption of two different transformation lan-
guages: one for schemas and one for instances. It would involve a complete de-
coupling between the two layers, forcing the platform to separately deal with
two levels of abstraction and, as a consequence, with two types of transforma-
tion rules. The opposite strategy is the one currently adopted by MIDST (with
the cited drawbacks): one unified language for both schema and instances that,
actually, causes schema rules to be initially translated into instance rules.

The two extreme views can be reconciled in two ways: designing an inter-
mediate language allowing for greater expressivity on instances or modelling an
engineered representation for mappings.

The first branch of solutions can be again split in two different approaches.
One could think of an extension to schema transformations rules involving a set
of functions specifying expressive manipulations for instances. In this way a more
straightforward generation of data rules from schema rules would be allowed: it
would not be a merely syntactical translation anymore. Instead, due to these
functions, the semantics of data rules could be customized and strongly differ
from schema rules. In this way, data rules generated from the schema level ones
would be much more powerful.

It would be also possible to support two different languages for translations
in a framework where the one for instances is a lower level translation of the one
for schemas (in the specific case it would imply datalog being translated to SQL
for schemas, and straightly SQL for instances). Then the data architect would
be allowed to write specific SQL rules for instances whenever the automatically
generated ones are not detailed enough.

Adopting an engineered representation of mappings is the most standard so-
lution, since it guarantees a greater expressivity and flexibility. As dealt with
in the literature [8], defining an engineered mapping is an open problem and a
global approach has not been recognized yet. The main point is that of generat-
ing those mappings, hence the implementation of a sufficiently general match
operator. Many heuristic algorithms have been proposed in this field, also adopt-
ing sophisticated structures for mappings, however their weakness is the absence
of an explicit and rich representation of models. This both complicates the pro-
cess of similarity recognition and leads to model-dependent mappings. MIDST
metalevel approach, supporting a complete and extendible meta-representation
of models, can lead to simpler definitions of engineered mappings and to more
effective matching algorithms. For instance, let us consider the similarity flood-
ing algorithm [19,20], an advanced implementation of match. It compares two
graphs representing schemas and returns pairs of similar nodes. The similarity
of nodes is evaluated both on the basis of heuristic criteria and on a similarity
propagation assumption: if two nodes are similar, their neighbors also tend to be
similar. Finally a user-aided pruning phase allows to discard the false positives.

The first step of the similarity flooding is the translation of the schemas into
graph models. Currently some kind of generality in this field has been achieved
by means of SQL DDL to graph translating tools [19,20]. Then the nodes are
compared with one another independently of the logical function they have in the

234 P. Atzeni et al.

model of interest. MIDST rich representation of models and schemas would allow
for a less syntactical implementation of the algorithm. One would no longer need
to pass through the DDL specification of a given database in order to obtain the
graph version, since it is already explicitly managed in the metalevel. In addition
the graph model over which the algorithm operates could be enhanced with some
kind of model-awareness. For example, given a subgraph of the first schema, the
algorithm could perform a fake translation in order to isolate the correspondent
subgraph in the second schema. Then the similarity flooding comparison might
be limited to that portion and, therefore, yield less false positive pairs and involve
less user effort.

5 Data Provenance and Quality Problems

The growing number of heterogeneous data together with a uniform access mech-
anism tend to increase their availability, while inducing a potential decrease in
quality. Large and complex workflows involving the integration of pieces of in-
formation coming from different data sources present the need for provenance1

metadata [25]. They enhance data quality under several aspects: possibility to
verify whether the data meet the business requirements, establishing creational
context, protection of intellectual property and so on.

The shared and uniform access mechanism provided by modern infrastructures
makes data prone to losing quality and coherence. Therefore integrity constraints
acquire more and more significance in these environments.

A modern approach to these issues should be model-independent and operate
at runtime. Whereas there are many proposals for runtime provenance and in-
tegrity constraints handlers, to the best of our knowledge, MMS managing this
kind of issues model-independently are not currently available.

Here we argue that MIDST metalevel can be extended to cope with these
problems with a general approach. It is not worth analyzing possible strategies
in detail, however brief explanations should get the idea across.

5.1 Data Provenance

MIDST manages migration of data expressed with directly applicable datalog
rules. These rules are coded with respect to MIDST metaconstructs and define
manipulations over them. Here it would not be useful to pursue the details of
transformation rules, yet some concrete aspects are necessary to outline the main
ideas. We adopt a variant of datalog where the unique identifiers (OIDs) of meta-
constructs are generated by means of Skolem functions. For a given construct,
we define a set of Skolem functions generating OIDs for it from different sets
of strongly-typed parameters. These parameters may be other constructs identi-
fiers or constants. Skolem functions are bijective and, for a given construct, the
ranges of all the functions defined over it are disjoint. This approach allows to
1 In the literature data provenance is sometimes referred to as data lineage or data

pedigree [25].

From Schema and Model Translation to a Model Management System 235

easily handle some kind of where-provenance. It means that for a given construct
occurrence we can track back the whole path leading to it. A construct occur-
rence is characterized by an OID which is the unique output of a specific Skolem
function defined over the construct itself. MIDST handles a global materializa-
tion including every function. It is then sufficient to query that materialization
to determine the parameters which generated the OID under examination. What
is more is that, even though several functions are defined for a given construct,
since their ranges are disjoint, one could infer which function has been applied
on the basis of the OID value.

A detailed description of the possible implementations of strategies for the
data provenance would not be noteworthy here. However the key point is that
MIDST handles strongly-typed functions and strictly relates every construct
instance to its specific OID. This supports the design of procedures capable of
exploring the whole provenance graph. This exploration proceeds as long as a
the construct under examination is derived from another construct. When a
construct has an OID which derives from the application of a Skolem function
to a constant value, the current branch of the exploration terminates.

This idea assumes that MIDST works as a runtime MMS managing the whole
net of data migration; in that case pieces of information about why and how
provenance might be useful as well. They convey domain information about the
reason why a piece of data is present in a database. In some sense this informa-
tion is already managed by means of constant parameters of Skolem functions,
meaning that they store domain-level notions about the provenance. Anyway
an extension to the multilevel dictionary might include a richer description of
Skolem functions allowing for an expressive characterization of the why and how
provenance given in a user-chosen language. The power of this approach lays
both in the relational representation of metadata and in the strong connection
between a metaconstruct and the generating function. While the former aspect
is fundamental to guarantee a model-independent handling of data provenance,
the second enables an increasingly rich ontological representation of domain in-
formation that will be inherently related to the appropriate construct.

So far we have been describing the approach towards data provenance with
respect to metaconstructs; in fact MIDST proposes a mechanism allowing for
a two-fold definition of transformations: they are valid both for schemas and
for instances. Coherently, the platform adopts Skolem functions to define the
OIDs of data which are treated alike. So we store a tuple of metadata for each
value of each metaconstruct. For example, take the lexical that describes any
string-like conceptual element such as entity attributes or table columns. We
have one tuple of metadata for each value of every lexical. This representation
may seem too fine-grained, yet here it allows for an extremely detailed recording
of data provenance based on instance-level Skolem functions that work as we
have described for schemas.

In addition, we are not bound to adopt a specific language for transformations,
nevertheless it has to guarantee two major points: it must support Skolem func-
tions and have rules acting on metaconstructs. For sake of simplicity we might

236 P. Atzeni et al.

choose to enrich the SQL language with the possibility of specifying functions
for the OID generation. Even its standard version could be used if we interpose
a query preprocessing phase applying Skolem functions to generate identifiers.

5.2 Integrity Constraints

In a model management system we may state that handling integrity constraints
mainly involves three aspects: definition, application and management. The def-
inition recalls the need to design a language and a metadata representation for
constraints; the application is the satisfaction verification, while the management
represents the need for an integrated handling in a heterogeneous environment.

It is clear that in a simple context which is usually model-dependent, a well-
defined constraint only needs mechanisms for its validation. By contrast, a more
complex environment, with translations and migrations among different data
models, needs further strategies.

MIDST currently allows for a syntactical definition of both internal and ex-
ternal2 constraints. As for the first ones, simple SQL CHECK conditions are
expressed in the metaconstructs by means of their properties. Since the met-
alevel describes what properties a construct has and potentially their structure,
more sophisticated and expressive internal constraints may be defined as well.

External constraints do not even need an explicit definition in terms of proper-
ties. For example, we handle a metaconstruct (foreign key) that connects lexicals
on the basis of a foreign key constraint. Thus, since lexicals belong to conceptual
entities, such as abstracts or aggregations, then the foreign key also models the
relationships (and the dependences) between them.

As for the constraint verification, currently MIDST does not offer any effec-
tive solution. A syntactical test on instances based on constraints defined over
schemas might be implemented, however it would not be the best choice. In-
tegrity constraints allow for an enduring data consistence that must be verified
at runtime. Thus, the architectural definition of a more complex MMS should
point out what software component is responsible for that verification. Probably,
if we consider an MMS as a mediator in a heterogeneous context, the responsi-
bilty for this test will belong to the client database management systems. Instead,
if the MMS concentrates the whole responsibility for the data management, it
will include a dbms performing integrity checks. Hence an expressive representa-
tion of models and effective strategies to import and export constraints should
be sufficient for our needs.

A real MMS deals with several models and performs translations among them.
One main feature is that of preserving integrity constraints in those transfor-
mations. Here the potentialities of MIDST are particularly remarkable since
constraints could be managed in a model-independent way. During translations
internal integrity constraints are treated as propositional formulas. For example,
consider a column of a relational table; in MIDST it is represented by a lexi-
cal. Suppose that a not-nullable constraint is defined over it. We have a datalog
2 Constraints are similarly classified as intra-relational or inter-relational according

to the relational terminology.

From Schema and Model Translation to a Model Management System 237

rule that translates columns into attributes of ER entities. The lexical has the
property isNullable: false that models the constraint with a simple propositional
formula. Normally, before the creation of the new lexical the translation rule
does not need to alter the formula that is simply copied. Alternatively, if one
wanted to invert that constraint and allow null values in entity attributes, the
datalog rule would insert a negation.

In general it means that a datalog rule can involve a complex expression cod-
ing the translation of constraints when inter-model translations are performed.
Foreign keys work alike. Suppose a foreign key links two lexicals of two different
relational tables. When the schema is translated into the ER model, tables turn
into entities and specific rules support the translation of integrity constraints
into relationships.

This means that a possible direction is using MIDST for constraint definition.
Constructs coding them could be defined in the metamodel and would be inde-
pendent of the specific model. Translations for constraints could be written as
well as normal translations currently allowed by the platform and, in a long-term
perspective, could be even automatically generated from the metamodel.

6 An Object-Oriented Scenario

In object-oriented applications, the modern approaches towards persistence tend
to recognize the benefits of adopting object-to-relational mapping (ORM) strate-
gies [16,18,21,23,27]. Let us briefly define how an application can be considered
in terms of schema and instances. Classes define the general structure of the
objects: name, attributes and references. Then, the graph of the classes of an
application represents its schema. At runtime, on the basis of the definition of the
classes, a graph of objects is built. That graph is an instance of the class-based
schema.

ORM frameworks are based on the specification of mappings between the
object schema (the classes) and the relational schema (the one on the actual
database) by means of annotations or other mechanisms involving metadata.
In the software development process, the relational database and the software
components are not designed at the same time and change independently. These
frameworks, implementing a meet-in-the-middle approach [11,9], decouple the
lifecycles of the two layers by leveraging on mappings. In fact, when the ap-
plication logic or the database change, it is sufficient to redefine the mappings
between them. One research key point in this field is of course the efforts in
defining working solutions to the data exchange problem that makes the object
instances migrate into the database. Moreover the definition of sophisticated
mappings to correctly represent object structures (such as nested classes and
hierarchies [10]) is relevant.

An innovative scenario may arise by using MIDST in order to support simple
mappings between the object graph and the metalevel. In MIDST metamodel it
is possible to determine a set of metaconstructs which represents a complete
object-oriented model. Therefore the class schema of an application can be

238 P. Atzeni et al.

mirrored (imported) into MIDST supermodel and instances can be made to
migrate by adopting extremely simple mappings. Unlike traditional ORM, the
approach would not handle a static correspondence between two given schemas,
instead it would implement a simple import of the object graph into the appropri-
ate subset of the supermodel defining the object-oriented model. It is important
to point out that this imports both the schema and the data of the applica-
tion into MIDST metalevel and treats the result as a normal schema. Therefore
model management operations as well as translations can be applied to it.

This introduces a great flexibility allowing for model-independent persistence
handling. From another point of view, the described approach represents a so-
phisticated ORM where instances are memorized in an articulated relational
structure (the multilevel dictionary) modelling general object graphs.

What is remarkable is that the explicit representation of schemas leads to a
higher level of abstraction. Whereas in ORM we specify correspondences between
classes and relations, instance variables and columns, references and foreign keys,
here those very concepts are modelled in general in the metalevel and are equally
valid for any application.

With traditional ORM only data exchange problems can be used to man-
age the relationship between the object graph and the database schemas. It
also comes as a consequence of the strict pursuing of the meet-in-the-middle
approach. In a complete MMS, the adoption of such a strategy would be less
tight because of the availability of the whole spectrum of model management
solutions.

Besides, MIDST does not only address the meet-in-the-middle approach. If
the database is firstly developed (database-first), the application logic could ben-
efit from an object graph directly derived from it (export) with a simple (copy)
mapping. Conversely, if the application logic is an early activity (application-
logic-first) in the development process, persistence can be achieved by importing
meaningful entities. Finally if meet-in-the-middle is promoted, more sophisti-
cated interrelating mappings can be defined.

Moreover, we could exploit the potentialities of the solutions to model manage-
ment problems for complex tasks. Advanced relationships between the data model
and the program instance itself could be addressed: a change in the data model
induces changes in the memory object graph (forward engineering), while objects
modifications propagate backwards to the database (round-trip engineering).

Although the illustrated approach has a greater significance in a runtime sce-
nario, from many points of view, an off-line version is meaningful as well. Once an
object-oriented graph has been imported into MIDST metalevel, it can be used
for a wide variety of targets. First of all, possible applications involve the trans-
lation of these schemas into other models not only for persistence reasons, but
also to facilitate sharing, integration, migration of data. General purpose model
management operators (such as the ones already defined in MIDST) can be then
applied to the object schema in the metalevel and modified versions of it can be
obtained. The model-independent representation of an object-oriented applica-
tion could be also used for visualization [15], structural and behavioral analysis.

From Schema and Model Translation to a Model Management System 239

Examples of specific applications of the structural analysis are anti-pattern de-
tection and dependence verification [26]. On the other hand, behavioral analysis
[12] could be based on the fact that an instance obtained from an object graph at
a given time is a snapshot of the execution of the process. Different snapshots of
an executing program allow to define a track of the execution states that could
be related to mappings, handled by means of model management operators and
used for debugging reasons.

7 Discussion

This paper, moving from MIDST approach towards schema and data transla-
tion, has recalled how the platform can be considered as a general applicator
of transformations to schemas. On this basis, reasonings about a possible de-
velopment of MIDST into a full-featured model management system have been
provided. Major problems and research directions for the main challenges have
been explained.

References

1. Atzeni, P., Bellomarini, L., Bugiotti, F., Gianforme, G.: A platform for model-
independent solutions to model management problems. VLDB Journal (to appear,
2008)

2. Atzeni, P., Cappellari, P., Bernstein, P.A.: A multilevel dictionary for model man-
agement. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó.
(eds.) ER 2005. LNCS, vol. 3716, pp. 160–175. Springer, Heidelberg (2005)

3. Atzeni, P., Cappellari, P., Bernstein, P.A.: Model-independent schema and data
translation. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopou-
los, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS,
vol. 3896, pp. 368–385. Springer, Heidelberg (2006)

4. Atzeni, P., Cappellari, P., Gianforme, G.: MIDST: model independent schema and
data translation. In: SIGMOD Conference, pp. 1134–1136. ACM Press, New York
(2007)

5. Atzeni, P., Torlone, R.: Management of multiple models in an extensible database
design tool. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996.
LNCS, vol. 1057, pp. 79–95. Springer, Heidelberg (1996)

6. Bernstein, P., Haas, L., Jarke, M., Rahm, E., Wiederhold, G.: Panel: Is generic
metadata management feasible? In: VLDB, pp. 660–662 (2000)

7. Bernstein, P.A.: Applying model management to classical meta data problems. In:
CIDR Conference, pp. 209–220 (2003)

8. Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating richer mappings.
In: SIGMOD Conference, pp. 1–12 (2007)

9. Cabibbo, L.: Objects meet relations: On the transparent management of persistent
objects. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 429–
445. Springer, Heidelberg (2004)

10. Cabibbo, L., Carosi, A.: Managing inheritance hierarchies in object/relational map-
ping tools. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp. 135–150. Springer, Heidelberg (2005)

240 P. Atzeni et al.

11. Cabibbo, L., Porcelli, R.: M2orm2: A model for the transparent management of
relationally persistent objects. In: Lausen, G., Suciu, D. (eds.) DBPL 2003. LNCS,
vol. 2921, pp. 166–178. Springer, Heidelberg (2004)

12. Giguette, R., Hassell, J.: A relational database model of program execution and
software components. In: ACM-SE 38: Proceedings of the 38th annual on Southeast
regional conference, pp. 146–155. ACM Press, New York (2000)

13. Haas, L.M.: Beauty and the beast: The theory and practice of information integra-
tion. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 28–43.
Springer, Heidelberg (2006)

14. Halevy, A.Y., Ashish, N., Bitton, D., Carey, M.J., Draper, D., Pollock, J., Rosen-
thal, A., Sikka, V.: Enterprise information integration: successes, challenges and
controversies. In: SIGMOD Conference, pp. 778–787 (2005)

15. Hamer, J.: Visualising java data structures as graphs. In: ACE 2004: Proceedings
of the sixth conference on Australasian computing education, pp. 125–129 (2004)

16. Hibernate, http://www.hibernate.org/
17. Hull, R., King, R.: Semantic database modelling: Survey, applications and research

issues. ACM Computing Surveys 19(3), 201–260 (1987)
18. Java Data Objects, http://www.jdocentral.com/
19. Melnik, S.: Model management: First steps and beyond. In: BTW, pp. 455–464

(2005)
20. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph

matching algorithm and its application to schema matching. In: ICDE, pp. 117–
128 (2002)

21. Microsoft ObjectSpaces, http://msdn.microsoft.com/library/
default.asp?url=/li-brary/en-us/dnadonet/html/objectspaces.asp/

22. Mork, P., Bernstein, P., Melnik, S.: A schema translator that produces object-to-
relational views. Technical Report MSR-TR-2007-36, Microsoft Research (2007),
http://research.microsoft.com

23. Oracle AS TopLink, http://otn.oracle.com/products/ias/toplink/
24. Papotti, P., Torlone, R.: Heterogeneous data translation through XML conversion.

J. Web Eng. 4(3), 189–204 (2005)
25. Simmhan, Y., Plale, B., Gannon, D.: A survey of data provenance in e-science. In:

ACM SIGMOD International Conf. on Management of Data, vol. 34(3), pp. 31–36
(2005)

26. Structural Analysis for Java, http://www.alphaworks.ibm.com/tech/sa4j/
27. The Java Persistence API - A Simpler Programming Model for Entity Persistence,

http://java.sun.com/developer/technicalarticles/j2ee/jpa/

http://www.hibernate.org/
http://www.jdocentral.com/
http://msdn.microsoft.com/library/default.asp?url=/li-brary/en-us/dnadonet/html/objectspaces.asp/
http://msdn.microsoft.com/library/default.asp?url=/li-brary/en-us/dnadonet/html/objectspaces.asp/
http://research.microsoft.com
http://otn.oracle.com/products/ias/toplink/
http://www.alphaworks.ibm.com/tech/sa4j/
http://java.sun.com/developer/technicalarticles/j2ee/jpa/

XtreemOS: Towards a Grid-Enabled Linux-Based

Operating System

Domenico Laforenza

Information Science and Technologies Institute (ISTI)
The Italian National Research Council (CNR)

Area della Ricerca
Via Giuseppe Moruzzi, 1

I-56126 Pisa Italy
domenico.laforenza@isti.cnr.it

Extended Abstract

The term Grid computing was introduced at the end of 90s by Foster and
Kesselman; it was envisioned as “an important new field, distinguished from
conventional distributed computing by its focus on large-scale resource sharing,
innovative applications, and, in some cases, high-performance orientation” [1].

Defining Grids has always been difficult but nowadays there is a general
agreement that Grids are distributed systems enabling the creation of Virtual
Organizations (VOs) [2] in which users can share, select, and aggregate a wide
variety of geographically distributed resources, owned by different organizations,
for solving large-scale computational and data intensive problems in science, en-
gineering, and commerce. Those platforms may include any kind of computa-
tional resources like supercomputers, storage systems, data sources, sensors, and
specialized devices.

From the end of 90s a lot of water has passed under the bridge, and sev-
eral researchers proposed to revise the initial definition of Grid. More re-
cently researchers belonging at the European Network of excellence “CoreGrid”
(http://www.coregrid.net/) reached an agreement on the following definition: a
Grid is “a fully distributed, dynamically reconfigurable, scalable and autonomous
infrastructure to provide location independent, pervasive, reliable, secure and
efficient access to a coordinated set of services encapsulating and virtualizing re-
sources (computing power, storage, instruments, data, etc.) in order to generate
knowledge”.

This is a more modern service-oriented vision of the Grid that stems from
the conviction that in the mid-long term the great majority of complex soft-
ware applications will be dynamically built by composing services, which will be
available in an open market of services and resources. In this sense, the Grid will
be conceived as a “world-wide cyber-utility” populated by cooperating services
interacting as in a complex and gigantic software ecosystem.

In order to manage Grid platforms several approaches were proposed. Some
of those, which for simplicity we might call it “á la Globus” [3], are based on
middleware layers that link in a loosely-coupled way the user applications and

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 241–243, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

242 D. Laforenza

the underneath distributed multi-domain heterogeneous resources. The adop-
tion of Grid middleware is one of the most widely adopted approaches. Those
middleware layers are used to address the complexity of Grid platforms and to
help the user to use Grid resources in an integrated way. In some of the current
Grid middleware systems (e.g. Globus [3], EGEE gLite [4], UNICORE [5]) the
operating system support for Grid computing is quite minimal or non-existent
because they have been developed with different goals in mind. The á la Globus
approaches are designed as “sum of services” infrastructures, in which tools
are developed independently in response to current needs of users. In particular,
Globus started out with the bottom-up premise that a Grid must be constructed
as a set of tools developed from user requirements, and consequently its versions
(GT2, GT3, GT4) are based on the combination of working components into a
composite Grid toolkit that fully exposes the Grid to the programmer.

While Grid Computing has gained much popularity over the past few years
in the scientific contexts, it is still cumbersome to effectively use in business
and industrial environment. In order to overcome most of mentioned difficul-
ties before several researchers proposed to build a true Grid Operating Sys-
tem (GOS) [6,7,8,9,10]. A GOS is a distributed operating system targeted for
a large-scale dynamic distributed architecture, with a variable amount of het-
erogeneous resources (resource may join, leave, churn). A GOS should be vir-
tual organizations-aware, spanning multiple administrative domains without no
central management of users and resources (multiple administrators, resource
owners, VO managers). This GOS should be composed of a consistent set of
integrated system services, providing a stable Posix-like interface for application
programmers. Moreover, abstractions or jobs (set of processes), files, events, etc.
should be provided by a GOS.

This talk will present XtreemOS [11], a first European step towards the cre-
ation of true open source operating system for Grid platforms. The XtreemOS
project aims to address this challenge designing, implementing, experimenting
and promoting an operating system that will support the management of very
large and dynamic ensembles of resources, capabilities and information compos-
ing virtual organizations. Recognizing that Linux is today the prevailing operat-
ing system, XtreemOS started an effort to extend Linux towards Grid, including
a native support for the VOs management, and providing appropriate interfaces
to the GOS services. As it will be explained in this talk, the result is neither a
“true” Grid operating system nor a Grid middleware environment, but rather a
Linux operating systems with tightly integrated mechanisms for the quick and
user-friendly creation of distributed collaborations which share their resources
in a secure and user-friendly way.

References

1. Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a new computing infras-
tructure. Morgan Kaufmann, San Francisco (1999)

2. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the Grid: Enabling scalable
virtual organizations. International Journal of Supercomputer Applications (2001)

XtreemOS: Towards a Grid-Enabled Linux-Based Operating System 243

3. Globus, http://www.globus.org/, http://www.univa.com/
4. EGEE gLite, http://glite.web.cern.ch/glite/
5. Unicore, http://unicore.sourceforge.net/
6. Vahdat, A., Anderson, T., Dahlin, M., Belani, E., Culler, D., Eastham, P.,

Yoshikawa, C.: WebOS: Operating system services for wide area applications. In:
Proceedings of the Seventh Symposium on High Performance Distributed Com-
puting (July 1999)

7. Krauter, K., Maheswaran, M.: Architecture for a Grid Operating System. In: In-
ternational Workshop on Grid Computing, pp. 65–76 (2000)

8. Pike, R., Presotto, D., Dorward, S., Flandrena, B., Thompson, K., Trickey, H., Win-
terbottom, P.: Plan 9 From Bell Labs. Computing Systems 8(3), 221–254 (1995),
http://plan9.belllabs.com/plan9dist/

9. Padala, P., Wilson, J.N.: GridOS: Operating System Services for Grid Archi-
tectures. In: Pinkston, T.M., Prasanna, V.K. (eds.) HiPC 2003. LNCS (LNAI),
vol. 2913, Springer, Heidelberg (2003)

10. Mirtchovski, A., Simmonds, R., Minnich, R.: Plan 9: An Integrated Approach To
Grid Computing. In: IPDPS 2004, Santa Fe, NM, USA, April 26-30 (2004)

11. The XtreemOS European Project, http://www.xtreemos.eu/

http://www.globus.org/
http://www.univa.com/
http://glite.web.cern.ch/glite/
http://unicore.sourceforge.net/
http://plan9.belllabs.com/plan9dist/
http://www.xtreemos.eu/

High-Assurance Integrity Techniques for Databases

Elisa Bertino, Chenyun Dai, Hyo-Sang Lim, and Dan Lin

Department of Computer Science
Purdue University

{bertino,daic,hslim,lindan}@cs.purdue.edu

Abstract. With the increased need of data sharing among multiple organizations,
such as government organizations, financial corporations, medical hospitals and
academic institutions, it is critical to ensure data integrity so that effective de-
cisions can be made based on these data. In this paper, we first present an ar-
chitecture for a comprehensive integrity control system based on data validation
and metadata management. We then discuss an important issue in the data vali-
dation, that is, the evaluation of data provenance and propose a trust model for
estimating the trustworthiness of data and data providers. By taking into account
confidence about data provenance, we introduce an approach for policy observing
query evaluation as a complement to the integrity control system.

1 Introduction

With the widely use of computer techniques, it is estimated that more than 90% of the
business records being created today are electronic as reported by American Record
Management Association (ARMA) [1]. The need for sharing data within and across or-
ganizations is also more critical than ever. The availability of comprehensive data makes
it possible to extract more accurate and complete knowledge and thus supports more in-
formed decision making. However reliance on data for decision making processes and
other critical data-intensive tasks requires data to be of good quality and trusted. We
refer to such requirements as high-assurance data integrity.

While there have been some efforts to ensure confidentiality when sharing data, the
problem of high-assurance data integrity has not been widely investigated. Previous ap-
proaches have either addressed the problem of protection from data tampering, through
the use of digital signature techniques, or the problem of semantic integrity, that is,
making sure that the data is consistent with respect to some semantic assertions. How-
ever, even though these techniques are important components of any solution to high-
assurance data integrity, they do not address the question on whether one can actually
trust certain data. Those techniques, for example, do not protect against data decep-
tion, according to which a malicious party may provide on purpose some false data, or
against the fact that a party is unable, for various reasons, to provide good data. Tech-
niques, like those developed in the area of data quality [4], may help; however they often
require the availability of good quality data sources against which one can compare the
data at hand and correct them.

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 244–256, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

High-Assurance Integrity Techniques for Databases 245

It is clear that in order to address the problem of high-assurance data integrity we
need comprehensive solutions combining several different techniques. In this paper, we
first present an architecture for comprehensive integrity control systems [7] which is
mainly based on metadata management and data validation. Then we discuss issues
concerning data validation and propose an approach to evaluate the trustworthiness of
data provenance as well as a framework that evaluates queries based on the confidence
about data provenance. In what follows, we discuss our work in more details.

Integrity is generally understood as “the prevention of unauthorized and improper
modification of data” [5], but this definition is not rigorous since the term “improper”
could mean many things [16]. In order to provide a comprehensive approach, we define
a set of meaningful requirements by examining various integrity models. We introduce
a notion of metadata template by which various types of metadata related to integrity
requirements can be specified. We also present a flexible integrity control policy specifi-
cation language that is able to support not only access control policies but also data val-
idation for preserving data integrity. In our integrity assurance system, data validation is
carried out based on metadata values including the data sources. The trustworthiness of
data resources largely affects the trustworthiness of the data. For example, a malicious
data source provider may announce that a small company has successfully signed a big
contract which is not true in reality. This information is then passed to a stock analysis
agent, based on which the agent infers that the stock prize of that company will go up
with high probability and send this information to the data users. If those users, based
on such information, decide to acquire stocks of such company, they may end up with
severe financial losses. In contrast, the data users may avoid such risks if they are aware
that the source provider is not very trustworthy. Therefore, we propose a data prove-
nance trust model that takes into account various factors affecting the trustworthiness.
According to those factors, we assign trust scores to both data and data providers. Such
trust scores represent key information based on which data users may decide whether
to use the data and for which purposes.

If the trust score of the data is very low, users may require better data. There are many
approaches for improving the data quality but the cost for obtaining accurate data can
be very high in some situations. However, we observe that accurate data is not always
necessary. For example, if a user just wants to compute some statistical summary of
the data, data with low confidence may be sufficient since providing data with high
confidence is usually very expensive. On the other hand, if the user has to make a
critical decision, data with high confidence may be required. Therefore, we propose
a data provenance-aware access control policy, referred to as confidence policy. As a
complement to the integrity control mechanism that applies to the database before any
operation, the confidence policy restricts the access to the query results based on the
provenance confidence levels of the query results.

The rest of the paper is organized as follows. Section 2 briefly reviews related work.
Section 3 discusses integrity requirements and an architecture for a comprehensive in-
tegrity control system. Section 4 presents a data provenance trust model. Section 5
presents a framework for policy observing query evaluation based on provenance con-
fidence. Finally, Section 6 concludes the paper.

246 E. Bertino et al.

2 Related Work

Work related to our approach falls into three categories: (i) integrity models, (ii) access
control policies, and (iii) lineage calculation.

Biba [6] has proposed an approach based on a hierarchical lattice of integrity levels
so as to ensure integrity by blocking transmitting low-integrity objects to high-integrity
subjects. However, the approach is not easy to use because it is not clear how to de-
termine the appropriate integrity levels. Clark and Wilson [8] have proposed a model
for data integrity in commercial environments. The model consists of two key notions:
well-formed transactions and separation of duty. A well-formed transaction is one that
only manipulates data in trusted ways so to preserve the consistency of data. Separa-
tion of duty mandates separating all operations into several subparts and executing each
subpart by a different subject. The model has however some limitations in that it cate-
gorizes data integrity only according to two levels: valid and invalid. Our approach to
integrity control systems is more comprehensive than those models in that it provides
mechanisms driven by integrity policies and provides an approach to determine the data
trust level based on data provenance information. As for access control in a relational
database system, most existing access control models, like Role-Based Access Control
[11] and Privacy-aware Role-Based Access Control [15], perform authorization check
before every action on the database. Our confidence policies apply to query results and
thus they are complementary to access control.

Data provenance, also referred to as lineage or pedigree in databases [20], has been
widely investigated. Approaches have been developed for tracking the provenance of
the query results, i.e., recording the sequence of steps taken in a workflow system to de-
rive the dataset, and computing confidence levels of the query results [2,3,12,13,14,18].
For example, Widom et al. [21], have developed the Trio system which supports man-
agement of information about data accuracy and lineage (provenance). Sarma et al. [19]
have developed an approach to compute lineage and confidence in probabilistic data-
bases according to a decoupled strategy. However, very few approaches have been pro-
posed for evaluating trust of data sources and provenance paths.

The most relevant work concerning the evaluation of data provenance is by Yin et
al. [22], which however only deals with conflicting information provided by different
websites. They assume an identifier that links different items corresponding to the same
entity which seems unrealistic. Their trust model contains a large number of parameters
that are hard to determine. Compared to their work, we do not assume the existance of
identifiers for the entities of interest and take into account several aspects that can affect
the trustworthiness of the data.

3 Architecture for Comprehensive Integrity Control Systems

We have devised a set of relevant integrity requirements and a comprehensive frame-
work for integrity control systems in our previous work [7]. In this section, we briefly
discuss the requirements and the framework. The proposed framework includes a sys-
tem architecture for integrity management systems and a flexible integrity control policy
specification language.

High-Assurance Integrity Techniques for Databases 247

3.1 Integrity Requirements

As we mentioned before, the meaning of data integrity varies according to different peo-
ple and applications [16]. Therefore, the first task in designing an integrity management
system is to precisely identify what requirements are most essential. We have investi-
gated various existing integrity models, and then, summarized the core requirements for
integrity control system as follows.

– Information-flow control is needed to prevent lower integrity data from conta-
minating higher integrity data. The Strict Integrity and the Low Water-Mark mod-
els [6] are representative integrity models based the notion that integrity is achieved
by controlling the flow of information from objects to subjects. These models as-
sign integrity levels to subjects and objects, and then, prevent information from
flowing from low to high integrity levels.

– Data verification ensures that only verified data are presented to certain transac-
tions. Clark and Wilson [8] propose an integrity model ensuring that well-formed
transactions only receive valid data to guarantee that the results of the transactions
preserve their valid states.

– Prevention of fraud and errors is necessary to ensure that only legitimate data
are introduced in information systems. Such requirement is usually addressed by
enforcing separation of duty between users and system administrators. Separation
of duty has been widely investigated in access control community, especially in the
context of role-based access control models [11,17].

– Autonomous data integrity validation is essential for maintaining and/or enhanc-
ing integrity of data. Data validation is different from data verification since data
validation mechanisms continuously monitor and validate data objects indepen-
dently from access control. It also tries to enhance the integrity of data according
to dynamic changes in the data environments.

Although these requirements do not address integrity in all its aspects, we believe
that they are the most relevant also because each one of them requires the deployment
of different techniques. We note that those techniques should be combined in order to
achieve a systematic method for preserving integrity to some significant level.

3.2 System Architecture

We now briefly discuss a system architecture designed to harmonize the integrity re-
quirements with conventional access control systems. Figure 1 shows a high level view
of the proposed architecture.

As shown in Figure 1, the integrity controller is transparent to subjects who send
access requests and receive access control results since it is integrated with the con-
ventional access controller. The role of integrity controller is to specify and enforce
integrity based on metadata and integrity policies. The integrity controller consists of
the following four components.

– Integrity policy supplier. It provides information related to integrity policies and
metadata values to integrity policy repository and integrity metadata repository.

248 E. Bertino et al.

Fig. 1. Architecture for Integrity Management System

This is the key component of the architecture in that it interact with the external
environment and applications in order to gather all information needed to assign
trust values to data, to their provenance,and their providers.

– Integrity policy repository and integrity metadata repository. They maintain and
manage various information about policies, users, and data for the integrity valida-
tor. Among other functions, this component provides an editor for specifying poli-
cies and metadata templates, that is, intensional definitions of metadata required for
each data for which integrity is crucial.

– Integrity validator. It carries out integrity validation functions for access requests
and data objects in database. The integrity functions of the integrity validator are
invoked when access requests arrive from the conventional access controller or are
autonomously executed by data integrity validation procedures.

3.3 Integrity Control Policies

We now describe a language for specifying metadata managed in the integrity matadata
repository and then present our integrity control policy language which supports both
data validation and integrity-related access control.

Metadata specification language
The metadata specification language is used to describe data structures and values of
information by which data integrity is determined. Precisely specifying such informa-
tion is important for integrity control since such information can vary according to the
application requirements. For this we introduce a notion of metadata template.

Definition 1. Metadata template [7]. Let OT be the set of data types and R be the set
of roles existing in the system. A metadata template for a particular data type oti ∈ OT
or a particular role rj ∈ R is specified as follows.

MD-TEMPLATE template-ID FOR target {
attr1: attribute-description;
. . .
attrn: attribute-description;}

High-Assurance Integrity Techniques for Databases 249

where target is either oti or rj and represents the entity that is associated with the
specified metadata template. attri, i = 1, ..., n, is the name of the i-th attribute, and
attribute-descriptioni, i = 1, ..., n, is the registered method for the i-th attribute, which
may be a specific value, a function, or a system-variable.

An instance of metadata template is associated with a data item according to the meta-
data template specified for the type of the data item. The metadata instance is used in
integrity control policies whenever the associated data item is accessed.

Integrity policy specification language
An integrity control policy is specified for a particular data type and enforced on all
its instances. There are two kinds of policies in our framework: Access Control Policy
(ACP) and Data Validation Policy (DVP). In order to preserve data integrity when a data
item is read, modified, or deleted, ACP specifies what actions on the data are permitted
under which conditions. On the other hand, independently from data accesses, DVP
specifies autonomous processes for monitoring and/or enhancing the integrity. ACP and
DVP are formally defined as Definition 2 and 3 respectively.

Definition 2. Access Control Policy (ACP)[7]. Let OT be the set of data types existing
in the system and oti ∈ OT be a data type. Let R be the set of roles existing in the system
and rj ∈ R be a role. Let oti.attrs be the set of attributes specified in the metadata
template of oti. Similarly, let rj .attrs be the set of attributes specified in the metadata
template of rj . Then an ACP which governs access to the instances of oti by subjects
with role rj is specified as follows.

AC-POLICY ACP-ID FOR (oti, rj) {
WHEN AC-Event1, . . . , AC-Eventi;
IF Condition;
THEN Decision1: Action1, . . . , Actionm;
ELSE Decision2: Action1, . . . , Actionn; }

where:

– AC-Eventk, k = 1, ... , l, represents an access request {Read, Insert, Update, Delete}.
– Condition is a set of boolean-expression primitives which may be conjuncted, dis-

juncted, or negated with the boolean operators ∧, ∨, and ¬, respectively. A boolean-
expression primitive is of the form (x ⊗ y), where x (or y) is attrp ∈ oti.attrs, attrq

∈ rj .attrs, a constant, or a function that returns true or false, and ⊗ ∈ {<, ≤ , >,
≥ , =, �=}.

– Decisionk, k = 1, 2, is an access control decision which is one of {Allow, Deny}.
– Actionk, k = 1, . . . , m (or n), represents an action to be taken as a consequence of

the corresponding access control decision. An action is either a procedure invoca-
tion or a metadata update.

Definition 3. Data Validation Policy (DVP)[7]. Let OT be the set of data types ex-
isting in the system and oti ∈ OT be a data type. Let oti.attrs be the set of attributes
specified in the metadata template of oti. A DVP for data type oti is specified as follows.

DV-POLICY DVP-ID FOR oti {
WHEN Event1, . . . , Eventl;

250 E. Bertino et al.

IF Validation-procedure;
THEN Action1, . . . , Actionm;
ELSE Action1, . . . , Actionn; }

where:

– Eventk, k = 1, ... , l, represents either an access request {Read, Insert, Update,
Delete} or a user-defined event such as a specific time or a particular situation that
triggers the specified validation policy.

– Validation-procedure is a designated function which validates the data instances of
oti. It returns true if the validation succeeds; otherwise, it returns false.

– Actionk, k=1,...,m(or n), represents an action to be taken as a consequence of the
data validation. An action is either a procedure invocation or a metadata update.

The following examples illustrate how metadata templates, ACP, and DVP are used for
addressing integrity requirements.

Example 1. In our example scenario, we assume that there are a role ”USER” and a
data type(i.e., table) ”DATA”. Whenever a subject activates USER role, a trust level is
assigned to the subject using a function getTrustLevel () with USERID of the subject.
Also, whenever a DATA item is created, a default confidence level, 0 and a default
verified value, false are assigned to the data item. To meet these integrity requirements,
metadata templates for USER and for DATA are specified respectively as follows.

MD-TEMPLATE template-USER FOR USER {
trustLevel: getTrustLevel($USERID); }

MD-TEMPLATE template-DATA FOR DATA {
confidenceLevel: 0; // a default value
verified: false; // a default value }

USER can create a DATA item only if its trust level is greater than threshold. The
confidence level of the DATA item is determined by the trust level of the USER who
creates it. This integrity requirement is specified as an ACP, ACP-INSERT.

AC-POLICY ACP-INSERT FOR (USER, DATA) {
WHEN Insert;
IF (USER.trustLevel > threshold);
THEN Allow: (DATA.confidenceLevel ← USER.trustLevel);
ELSE Deny: −; }

The integrity of DATA may be influenced by changes on certain data items. Upon such
an event(namely, ChangeOnData), DATA is autonomously revalidated by a predefined
function, revalidateDATA (), and then, the result is recorded on the metadata. This vali-
dation requirement is specified as a DVP, DVP-VALIDATION.

DV-POLICY DVP-VALIDATION FOR DATA {
WHEN ChangeOnData;
IF revalidateDATA(this);
THEN (DATA.validated ← true);
ELSE (DATA.validated ← false); }

High-Assurance Integrity Techniques for Databases 251

We believe that our integrity control policy language with metadata template sufficiently
satisfies the various integrity requirements discussed above since it provides generic and
intuitive methods to specify various integrity policies. In particular it can represents
different integrity models previously proposed,like the models by Biba and by Calrk
and Wilson.

4 Trust Evaluation of Data Provenance

As we already mentioned, one important issue in determining data integrity is the
trustworthiness of data provenance. Data provenance includes information about the
process through which data have been generated and the input and output data of these
processes. Figure 2 shows a common scenario in which there are multiple parties char-
acterized as data source providers, intermediate agents and data users. Data source
providers could be sensor nodes or agents that continuously produce large volumes
of data items. Those data items describe the properties of certain entities or events. In-
termediate agents can simply pass the data items obtained from data source providers
to data users, or make use of the data items to generate knowledge items consumed by
data users or other intermediate agents. Data users are the final information consumers
who expect to receive trustworthy data. For representation simplicity, we will refer to a
data item or a knowledge item as an item when the context is clear.

To evaluate the trustworthiness of data provenance, we need to answer questions like
“Where did the data come from? How trustworthy is the original data source? Who
handled the data? Are the data managers trustworthy?” Due to the possible presence of
malicious source providers and inaccurate knowledge generated by intermediate agents,
the information provided to the data users could be wrong or misleading. Therefore, it
would be very helpful that each piece of information received by data users be rated by
a trust score indicating the trustworthiness level of the information. By using the trust

Fig. 2. Example Scenario

252 E. Bertino et al.

score, data users can determine whether they want to directly use the received infor-
mation or need to further verify the information. Moreover, each data source provider
(intermediate agent) is also assigned a trust score based on the amount of correct infor-
mation it has provided. In the following, we present formal definitions of the level of
trustworthiness for data items, knowledge items, data source providers and intermediate
agents.

Definition 4. Trust of data items and knowledge items. The trustworthiness of a data
items f (or a knowledge item k), denoted as t(f) (or t(k)), is the probability of f (or
k) being correct.

Definition 5. Trust of source providers and intermediate agents. The trustworthiness
of a source provider s (or an intermediate agent a), denoted as t(s) (or t(a)), is the
expected trustworthiness of the data items provided by s (or a).

Our model takes into account various aspects that may affect the trustworthiness of
an item. In particular, these aspects are data similarity, data conflict, path similarity and
data deduction.

– Data similarity refers to the likeness of different items. Similar items are con-
sidered as supportive to each other and they can be obtained by using clustering
algorithms. Then the trust score of an item tends to be higher when an item in a
larger cluster, i.e., there are more similar items.

– Data conflict refers to inconsistent descriptions or information about the same en-
tity or event. A simple example of a data conflict is that the same person appears at
different locations during the same time period. It is obvious that data conflict has
a negative impact on the trustworthiness of items.

– Path similarity refers to the likeness of the data generation paths. It affects the
importance of supports obtained from similar data. If several independent sources
provide the same data, such data is most likely to be true; otherwise, the support
from similar data are not of much value. Therefore, if the path similarity among a
group of similar items is low, we increase the trust scores of corresponding items;
otherwise, we add a negative effect to the scores.

– Data deduction measures the effect of the process (e.g. data mining) on the data.
Usually, the trustworthiness of the resulting data depends on the trustworthiness of
input data and the on the parties that process the data.

We also observe that a data is likely to be true if it is provided by trustworthy data
providers, and a data provider is trustworthy if most data it provides are true. Due to
such inter-dependency between data and data providers, we have developed an iterative
procedure to compute the overall trust scores. Initially, we assign each source provider
and intermediate agent an initial trust score by querying the information that the end
users already knew. The initial trustworthiness of each data item and knowledge
item is then set to the trustworthiness of its source providers and intermediate agent.
Then, we start the iteration. At each iteration, we compute the trustworthiness of the
data based on the combined effects of the aforementioned four aspects, and recompute
the trustworthiness of the data provider by using the trust scores of the data it provides.

High-Assurance Integrity Techniques for Databases 253

When a stable stage is reached, that is, when the changes of trust scores are negligible,
the trust computation process stops. We have carried out experimental activities to as-
sess our trust score computation algorithm and our experimental results demonstrate its
efficiency [9].

5 Policy Compliant Query Evaluation Based on Provenance
Confidence

In this section, we discuss how to integrate the knowledge of data provenance with
the query evaluation. We have developed a framework that evaluates queries accord-
ing to confidence policies. An overview of the framework is shown in Figure 3. Our
framework consists of three main components: query evaluation, policy evaluation and
provenance evaluation. The main task of the query evaluation component is to evaluate
queries and compute confidence levels of query results. The policy evaluation compo-
nent filters out the query results that do not satisfy the confidence threshold as stated in
confidence policies. The provenance evaluation component finds an optimal strategy to
increase provenance confidence level of base tuples so that more useful results can be
reported to users.

The data flow in the framework is described as follows. A user, or application, enters
Q, pu, perc and mon, where Q is a normal query, pu is the purpose of such a query,
perc is the percentage of results that a user expects to receive after policy checking, and
mon is the maximum amount of cost he would like to pay to obtain more useful informa-
tion. Then, the query evaluation component computes the query Q and the provenance
confidence level of each tuple in the query result. These intermediate results are sent
to the policy evaluation component. The policy evaluation component first selects the
confidence policy regarding the role of user U , the data U wants to access and the pur-
pose for which such access is required, and then checks each query result according to
the selected confidence policy. Only the results with confidence level higher than the
threshold specified in the confidence policy are returned to the user. If no result satis-
fies the confidence policy, the policy evaluation component sends a request message to
the provenance evaluation component. The provenance evaluation component adjusts
the confidence level of the base tuples involved in the query in order to obtain more

Request more results

Increase confidence

Database

Provenance Evaluation

Policy Evaluation

Query Evaluation
Query

Result Intermediate

Query

Result

Fig. 3. System Framework for Policy Compliant Query Evaluation

254 E. Bertino et al.

candidate results that meet the confidence requirements stated in the confidence policy.
Meanwhile, the provenance evaluation component needs to take into account the cost
introduced during the confidence level increment and calculates a plan that can minimize
such cost. The result tuple with the minimum cost will then be returned to the user.

We now proceed to present more details about confidence policy and provenance
confidence increment.

5.1 Confidence Policy

A confidence policy specifies the minimum confidence that has to be assured for certain
data, depending on the user accessing the data and the purpose for which the data are
accessed. In its essence, a confidence policy contains three components: a subject spec-
ification, denoting a subject or set of subjects to whom the policy applies; a purpose
specification, denoting why certain data are accessed; a confidence level, denoting the
minimum level of confidence that has to be assured by the data covered by the policy
when the subject (set of subjects) to whom the policy applies requires to access the data
for the purpose specified in the policy. Two example policies are shown as follows.

Example 2

- Pol1:〈Secretary, analysis, 0.3〉.
- Pol2:〈Manager, investment, 0.8〉.

Pol1 states that a secretary can use the data with confidence level higher than 0.3 for
analysis purpose; Pol2 states that a manager can use the data with confidence level
higher than 0.8 for investment purpose.

5.2 Provenance Confidence Increment

In some situations, the policy evaluation component may filter out all intermediate re-
sults if their confidence levels are all lower than the threshold specified in the associated
confidence policy. To enhance the chance for users to obtain more useful information,
our system allows users to specify a minimum percentage (denoted as θ) of results they
want to receive or a maximum amount of cost (denoted as c) they can afford. The prove-
nance evaluation component will compute the cost of increasing the confidence levels
of tuples in the base tables so that at least θ percent of query results will have the confi-
dence level above the threshold or at most cost c is needed. If the user agrees with such
additional cost, he will receive the query results. The problem can be formalized as a
nonlinear constraint optimization problem which can be solved by using either heuristic
or greedy algorithms. We refer the readers to [10].

6 Conclusion

In this paper, we analyzed various types of integrity models and identified a set of data
integrity requirements. Based on these requirements, we have developed a framework
for comprehensive integrity management, which includes metadata management, data

High-Assurance Integrity Techniques for Databases 255

validation and integrity control policies. An important part of data validation is the eval-
uation of data provenance. Therefore, we have developed a trust model for data prove-
nance evaluation which estimates the trustworthiness of both data and data providers.
Information about data provenance confidence is then taken into account during the
query evaluation. In particular, we have introduced the notion of confidence policy that
specifies the minimum confidence level about provenance that query results should have
in order to be returned to the user based on the user current task and integrated the en-
forcement of such policy in query processing.

Acknowledgements

This work is supported by Air Force Office of Scientific Research under the project
“Systematic Control and Management of Data Integrity, Quality and Provenance for
Command and Control Applications”.

References

1. http://www.arma.org/erecords/index.cfm
2. Abiteboul, S., Kanellakis, P., Grahne, G.: On the representation and querying of sets of pos-

sible words. Theoretical Computer Science 78(1) (1991)
3. Barbará, D., Garcia-Molina, H., Porter, D.: The management of probabilistic data. IEEE

Transactions on Knowledge and Data Engineering 4(5), 487–502 (1992)
4. Batini, C., Scannapieco, M.: Data quality: Concepts, methodologies and techniques.

Springer, Heidelberg (2006)
5. Bertino, E., Sandhu, R.: Database security - concepts, approaches, and challenges. IEEE

Transaction on dependable and secure computing 2(1), 2–19 (2005)
6. Biba, K.: Integrity considerations for secure computer systems. Technical Report TR-3153,

Mitre (1977)
7. Byun, J.-B., Sohn, Y., Bertino, E.: Systematic control and management of data integrity. In:

Proceedings of the 11th ACM symposium on Access control models and technologies, pp.
101–110 (2006)

8. Clark, D., Wilson, D.: A comparison of commercial and military computer security policies.
In: Proceedings of IEEE Symposium on Security and Privacy (1987)

9. Dai, C., Lin, D., Bertino, E., Kantarcioglu, M.: Trust evaluation of data provenance. In: CE-
RIAS Technical Report (2008)

10. Dai, C., Lin, D., Kantarcioglu, M., Bertino, E., Celikel, E., Thuraisingham, B.: Policy ob-
serving query evaluation based on provenance confidence and lineage propagation (under
preparation, 2008)

11. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed nist stan-
dard for role-based access control. ACM Trans. Inf. Syst. Secur. 4(3), 224–274 (2001)

12. Fuhr, N.: A probabilistic framework for vague queries and imprecise information in data-
bases. In: Proc. VLDB, pp. 696–707 (1990)

13. Fuhr, N., Rölleke, T.: A probabilistic relational algebra for the integration of information
retrieval and database systems. ACM Transactions on Information Systems 15(1), 32–66
(1997)

14. Green, T.J., Tannen, V.: Models for incomplete and probabilistic information. In: Proc. IIDB
Workshop (2006)

http://www.arma.org/erecords/index.cfm

256 E. Bertino et al.

15. Ni, Q., Trombetta, A., Bertino, E., Lobo, J.: Privcy aware role based access control. In:
Proceedings of the 12th ACM symposium on Access control models and technologies (2007)

16. Sandhu, R.: On five definitions of data integrity. In: Proceedings of the IFIP WG11.3 Work-
shop on Database Security (1993)

17. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access control models.
IEEE Computer 29(2), 38–47 (1996)

18. Sarma, A.D., Benjelloun, O., Halevy, A., Widom, J.: Working models for uncertain data. In:
Proc. ICDE, page 7

19. Sarma, A.D., Theobal, M., Widom, J.: Exploiting lineage for confidence computation in
uncertain and probabilistic databases. Technical Report, Stanford InfoLab (2007)

20. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science. SIGMOD
Record 34(3), 31–36 (2005)

21. Widom, J.: Trio: A system for integrated management of data, accuracy, and lineage. In:
Proc. CIDR, pp. 262–276 (2005)

22. Yin, X., Han, J., Yu, P.S.: Truth discovery with multiple conflicting information providers on
the web. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD 2007), pp. 1048–1052 (2007)

Towards General Temporal Aggregation

Michael H. Böhlen1, Johann Gamper1, and Christian S. Jensen2

1 Free University of Bozen-Bolzano, Italy
{boehlen,gamper}@inf.unibz.it

2 Aalborg University, Denmark
csj@cs.aau.dk

Abstract. Most database applications manage time-referenced, or temporal,
data. Temporal data management is difficult when using conventional database
technology, and many contributions have been made for how to better model,
store, and query temporal data. Temporal aggregation illustrates well the prob-
lems associated with the management of temporal data. Indeed, temporal aggre-
gation is complex and among the most difficult, and thus interesting, temporal
functionality to support. This paper presents a general framework for temporal
aggregation that accommodates existing kinds of aggregation, and it identifies
open challenges within temporal aggregation.

1 Introduction

In database management, aggregation refers to the process of consolidating, or sum-
marizing, a database instance; this is typically done by creating so-called aggregation
groups of elements in the database and then applying an aggregation function, e.g., avg ,
count , or min , to each group, thus obtaining an aggregate value for each group.

In early work, Klug [6] put forward a formal relational database framework that en-
compassed aggregation. In his framework, aggregation is performed according to two
parameters: (1) a set of attributes drawn from an argument relation, termed grouping
attributes, and (2) pairs of a new attribute name and an aggregation function. The tu-
ples in the relation are partitioned so that tuples with identical values for the grouping
attributes are assigned to the same group. For each of the resulting aggregation groups,
each aggregation function is evaluated on the tuples in the group, and the result is stored
as a value of the associated attribute for each tuple in the group.

In temporal databases, tuples are typically stamped with time intervals that capture
the valid time of the information, or facts, they record. During the 1980’s, aggregation
was incorporated in several query languages, e.g., Ben-Zvi’s Time Relational Model [1],
Navathe and Ahmed’s TSQL [7], Snodgrass’ TQuel [8], and a proposal by Tansel [10].
Some of these advances were subsequently consolidated in the TSQL2 proposal [9].

When aggregating temporal relations, it is meaningful to also group the tuples ac-
cording to their timestamp values. With temporal grouping, groups of values from the
time domain are formed. A tuple is then assigned to each group that overlaps with its
timestamp, this way obtaining groups of tuples. When an aggregation function is ap-
plied to the groups of tuples, a temporal relation results. Different kinds of temporal
groupings have emerged as being important. In instant temporal aggregation, the time

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 257–269, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

258 M.H. Böhlen, J. Gamper, and C.S. Jensen

domain is partitioned into time instants, or points. In moving-window (or cumulative)
temporal aggregation, additionally a time period is placed around each time instant to
determine the aggregation groups. With span aggregation, the time line is partitioned
into user-defined time periods.

This paper presents a general model for temporal aggregation that extends Klug’s
framework and that subsumes the temporal approaches mentioned above. The model
provides orthogonal support for two aspects of aggregation: (a) the definition of partial
result tuples for which to report one or more aggregate values, and (b) the definition
of aggregation groups, i.e., the collections of argument tuples that are associated with
the partial result tuples and over which the aggregation functions are to be computed.
Aggregation then takes three parameters: a partial result relation, g; a mapping function,
θ; and a set of pairs of an aggregation function and an attribute name, fi/Ci.

The most related, past works are due to Vega Lopez et al. [11] and Böhlen et al. [3].
The former offers a framework that enables the analysis and comparison of different
forms of temporal aggregation based on various mechanisms for defining aggregation
groups, which all take advantage of different granularities. This leads to a point-based
view that is not capable to preserve lineage information, and the resulting aggregation
groups are contiguous in the time dimension, i.e., the union of the timestamps of all
tuples in an aggregation group forms a convex set of time points. The latter offers a
framework that decouples the partitioning of the time domain from the specification
of the aggregation groups. This paper’s proposal builds on this work and extends it
in several directions. We elaborate on the relation to Klug’s and SQL’s framework,
show how to express previous forms of temporal aggregation in the general model, and
discuss by examples the additional expressiveness of the general model.

We proceed to introduce a running example. Section 3 then defines the new model,
and Section 4 illustrates how important kinds of temporal aggregation can be defined
using the model. Section 5 proceeds to identify directions for further research in tem-
poral aggregation. Section 6 summarizes the paper.

2 Aggregation Example

Consider a temporal relation emp that captures work contracts with employees, record-
ing for each contract the name of the employee (N), a contract identifier (CID), the de-
partment to which the employee is assigned for the duration of the contract, the monthly
salary for the contract period (S), and the valid time of the contract (T). An instance
of this relation is shown Fig. 1(a) and illustrated graphically in the upper part of Fig. 2,
where the horizontal lines indicate the valid-time intervals of the tuples.

We consider the following three temporal aggregation queries over the relation:

– QITA: For each month and department, what is the number of contracts?
– QMWTA: For each month, how many contracts have been in effect during this

month and the preceding two months?
– QSTA: For each half-year period and department, what is the number of contracts?

QITA exemplifies instant temporal aggregation, for which the aggregation is applied
to each database state, in this case to each month. To compute the aggregate result for

Towards General Temporal Aggregation 259

N CID D S T
r1 Jan 140 DB 1200 [1,12]
r2 Dan 141 DB 700 [1,5]
r3 Dan 150 DB 700 [6,15]
r4 Tim 143 AI 2000 [4,9]

(a) Relation emp

D Cnt T

DB 2 [1,5]
DB 2 [6,12]
DB 1 [13,15]
AI 1 [4,9]

(b) QITA

D Cnt T

DB 2 [1,5]
DB 3 [6,7]
DB 2 [8,14]
DB 1 [15,17]
AI 1 [4,11]

(c) QMWTA

D Cnt T

DB 3 [1,6]
DB 2 [7,12]
DB 1 [13,18]
AI 1 [1,6]
AI 1 [7,12]

(d) QSTA

Fig. 1. Temporal Relation emp and Different Aggregation Queries

(DB ,1,[13,18])

(AI ,1,[1,6]) (AI ,1,[7,12])

(DB ,2,[7,12])(DB ,3,[1,6])

QSTA

�

(DB ,2,[1,5]) (DB ,2,[6,12])

r4 = (Tim,143,AI ,2000,[4,9])

(AI ,1,[4,9])

(DB ,1,[13,15])

r3 = (Dan,150,DB ,700,[6,15])r2 = (Dan ,141,DB ,700,[1,5])

r1 = (Jan ,140,DB ,1200,[1,12])

1 42 3 5 8 10 11 12 13 14 156 97

emp

QITA

16 17 18

(2,[1,5]) (1,[15,17])
QMWTA

(3,[6,7]) (2,[8,14])

(3,[4,11])

Fig. 2. Graphical Representation of the emp Relation and Aggregation Queries

a specific month, all tuples that are valid for that month are considered. Coalescing is
used to get an interval-timestamped result relation. Coalescing yields result tuples over
maximal time intervals, also called constant intervals. For forming maximal intervals
two options exist. Either, the coalescing is performed wrt. the aggregate value alone,
or it is performed wrt. the aggregate value and the lineage, i.e., the set of argument
tuples used for computing the aggregate value. Coalescing with lineage preservation is
the most general approach and is thus used here [2]. The result of QITA is shown in
Fig. 1(b) and graphically illustrated in Fig. 2. Note that without lineage preservation,
(DB, 2, [1, 5]) and (DB, 2, [6, 12) would have been merged.

QMWTA illustrates moving-window aggregation. Here, the aggregate value for each
month is computed over all tuples that overlap this month or one of the preceding two
months. Thus, the last result tuple extends beyond the end point of the last argument
tuple. To obtain result tuples over maximal intervals, coalescing is applied similarly to
how it is done for ITA. The result of QMWTA is shown in Fig. 1(c) and graphically
illustrated in Fig. 2.

QSTA is a span aggregation query. The time domain is first partitioned into half-year
intervals independently of the argument relation. Then, for each half-year interval, the

260 M.H. Böhlen, J. Gamper, and C.S. Jensen

aggregation function is computed over all argument tuples that overlap that half year.
The result of QSTA is shown in Fig. 1(d) and graphically illustrated in Fig. 2.

3 General Temporal Aggregation

3.1 Preliminaries

We assume a discrete time domain, ΔT , consisting of a totally ordered set of elements,
termed time points (or instants). We assume a data model in which a timestamp, T ,
is assigned to each tuple that captures when the corresponding fact was, is, or will be
true in the modeled reality. A timestamp is a convex set over the time domain and
is represented by two time points, [Ts ,Te], denoting its inclusive starting and ending
points, respectively. In short, we assume a valid-time data model in which tuples are
timestamped with intervals.

A relation schema is a three-tuple R = (Ω, Δ, dom), where Ω is a non-empty,
finite set of attributes, Δ is a finite set of domains, and dom : Ω → Δ is a function
that associates a domain with each attribute. A temporal relation schema is a relation
schema with at least one timestamp valued attribute, i.e., ΔT ∈ Δ. A tuple r over
schema R is a function that maps every Ai ∈ Ω to a value vi ∈ dom(Ai). A relation r
over schema R is a finite set of tuples over R.

For notational simplicity, we assume an ordering of the attributes and represent a
temporal relation schema as r = (A1, . . . , An,T) and a corresponding tuple as r =
(v1, . . . , vn, [Ts ,Te]). For a tuple r and an attribute Ai we write r.Ai to denote the
value of the attribute Ai in r. For a set of attributes A1, . . . , Ak, k ≤ n, we define
r[A1, . . . , Ak] = (r.A1, . . . , r.Ak).

3.2 A General Model of Temporal Aggregation

Recall that Klug’s (and SQL’s) conventional framework for non-temporal aggregation
performs aggregation on an argument relation according to two parameters [6]:

1. A set of attributes drawn from the argument relation, termed grouping attributes
2. A set of pairs of a new attribute name and an aggregation function

The tuples in the argument relation are partitioned according to their values for the
grouping attributes. Then for each partition, each aggregation function given in the sec-
ond parameter is computed on the tuples in the partition, and the result is stored as
a value of the associated attribute for each tuple in the partition. The non-grouping
attributes of the argument relation may be eliminated from the result by means of a
projection using relational algebra.

The new model for temporal aggregation extends Klug’s framework to the temporal
context and generalizes it to provide orthogonal support for two important aspects of
aggregation: (a) the definition of partial result tuples for which to report one or more
aggregate values, and (b) the definition of aggregation groups, i.e., collections of argu-
ment tuples that are associated with the result groups and over which the aggregation
functions are computed.

Towards General Temporal Aggregation 261

Aggregate results

Partial result relation g

Result relation

Argument relation r

Fig. 3. General Temporal Aggregation

We assume that the aggregation is applied to a relation r, as described earlier. The
new temporal aggregation model allows then to specify the following three parameters:
(1) a partial result relation, g, (2) a mapping function, θ, from r to g, and (3) a set of
aggregation functions, F. The aggregation model is illustrated in Fig. 3.

Instead of partitioning the tuples in the argument relation according to their values
for certain of their attributes, we introduce a separate partial result relation, g, that
contains a partial result tuple for each tuple that will be included in the result relation;
i.e., these tuples will be extended with the aggregate results to form final result tuples.
The partial result relation has schema G = (B1, . . . , Bm,T), where the Bi are non-
temporal attributes and T is a timestamp attribute that specifies a time interval (or time
point, as a special case of an interval) over which to report an aggregation result. This
relation generally has as attributes a subset of the attributes of the argument relation, the
timestamp attribute being one of them. Thus, it can typically be specified as a relational
algebra expression over the argument relation, i.e., g = RA(r). In general, however,
the attributes Bi and the timestamp T in the partial result relation may also be obtained
from relations other than r.

The second parameter, mapping function, θ : r → g, maps tuples from the argument
relation, r, to tuples in the partial result relation, g. It may assign the same argument
tuple to zero, one, or many partial result tuples. In other words, function θ associates
with each partial result tuple a set of argument tuples, termed its aggregation group,
over which to compute the aggregates to be reported for that tuple. This differs from the
conventional framework, where each input tuple is mapped to exactly one group, based
on equal values over all grouping attributes.

The third parameter is retained from the conventional framework and specifies the
aggregation functions, F = {f1/C1, . . . , fk/Ck}. Each fi is some aggregation func-
tion that takes a (temporal) relation as argument and applies aggregation to one of the
relation’s attributes. The resulting value is stored as the value of an attribute named Ci.
For instance, the pair countCID/Cnt states that countCID counts the CID values in
the argument relation and returns the count, which is stored as a value of attribute Cnt .
Using this notation, we allow for a family of count functions, one for each attribute of

262 M.H. Böhlen, J. Gamper, and C.S. Jensen

the argument relation. For example, countN and countS counts over the name and the
salary attribute, respectively.

Definition 1 (General Temporal Aggregation). Let g be a partial result relation, θ
a mapping function, and F a set of aggregation functions, as introduced earlier. The
general temporal aggregation is then defined as follows:

GT [g, θ,F]r = {g ◦ f | g ∈ g ∧ rg = {r ∈ r | θ(r) = g} ∧ f = f1(rg), . . . , fk(rg)}
The schema of the result relation is (B1, . . . , Bm, C1, . . . , Ck,T).

The mapping function, θ, defines and associates an aggregation group, rg ⊆ r, with
each partial result tuple, g ∈ g. The aggregation functions are computed over these
aggregation groups. The final result tuples are given as the partial result tuples extended
(◦, concatenation) with the results of the aggregation functions.

General temporal aggregation decouples the specification of the desired result tuples
(i.e., the partial result tuples) from the specification of the aggregation groups (i.e., the
mapping of argument tuples to the partial result tuples). In SQL and Klug’s framework,
the desired result tuples and the aggregation groups are determined by the grouping at-
tributes only. Each different combination of grouping attribute values forms then a par-
tial result tuple and—by equality on the attribute values—determines a corresponding
aggregation group. We believe that the specification of the partial result tuples should
be decoupled from the specification of the associated aggregation groups, and we find
it natural to allow for the use of other operators than simply equality comparison for
the specification of the aggregation groups. This yields a more flexible and expressive
framework for temporal aggregation.

An important aspect of the framework is that the values for the timestamp attribute
in the partial result tuples may be either fixed and provided by the user, or it may be
inferred from the data in the argument relation. The use of fixed intervals corresponds
to how the non-timestamp attribute values are treated: they must be provided explicitly.
The use of inferred intervals is unique to the timestamp attribute. An inferred interval
in a partial result tuple is calculated as the intersection of the intervals of the argument
tuples that contribute to the aggregate results to be associated with that partial result
tuple. These inferred intervals are termed constant because there are no changes in the
argument relation during these intervals. Constant intervals are non-overlapping and
maximal. Queries QITA and QSTA illustrate the difference between user-provided and
inferred intervals.

The new model is quite general. The partial result relation, g, is completely inde-
pendent of the argument relation, r, and its only purpose is to group the results. This
provides extensive flexibility in arranging the results according to various criteria, and
it makes it possible to express different forms of temporal aggregates including the ones
proposed previously. We will show this next.

4 Different Forms of Temporal Aggregation

In part to explore the use and generality of the proposed aggregation framework, we
show how three previously proposed forms of temporal aggregation can be expressed

Towards General Temporal Aggregation 263

in a uniform manner using the framework. We also discuss aggregation queries that are
difficult or even impossible to express in terms of the traditional temporal aggregation
operators, but can be expressed easily in the new framework.

4.1 Instant Temporal Aggregation

In instant temporal aggregation (ITA), the time domain is partitioned into time instants,
and an aggregation group is associated with each time instant t that contains all tuples
with a timestamp that contains t. Then the aggregation functions are evaluated on each
group, producing each a single aggregate value for each t. Finally, identical aggregate
results for consecutive time instants are coalesced into the previously mentioned con-
stant intervals.

In some approaches, the aggregate results for a constant interval must also have the
same lineage, meaning that they are produced from the same set of argument tuples.
Query QITA and its result in Fig. 1(b) illustrate ITA. Without the lineage requirement,
the result tuples (DB , 2, [1, 5]) and (DB , 2, [6, 12]) would become (DB , 2, [1, 12]).

Definition 2 (Instant Temporal Aggregation). Let r be a temporal relation, F be a set
of aggregation functions, and A = A1, . . . , Ak be the grouping attributes in r. Further,
let s = π[A,Ts]r ∪ π[A,Te +1/Ts]r be the start points and e = π[A,Ts−1/Te]r ∪
π[A,Te]r be the delimiting points of the constant intervals. Then the instant temporal
aggregation for the aggregation functions in F over the argument relation r grouped by
A can be expressed in the general temporal aggregation model as GT [g, θ,F]r, where:

g = π[A, [Ts ,min(Te)/Te]](s ��[s.A = e.A ∧ Ts ≤ Te] e)
θ(r) = {g ∈ g | g.A = r.A ∧ g.T ∩ r.T
= ∅}

To express ITA, the partial result relation, g, needs to specify the constant intervals
of the result tuples, considering also the grouping attributes, A1, . . . , Ak. First, s and
e collect all start and end points of the constant intervals together with the grouping
attribute values. Each argument tuple, r ∈ r, induces two start points (the tuple’s start
point, r.Ts , and the successor of the tuple’s end point, r.Te+1) and two end points (the
tuple’s end point, r.Te , and the predecessor of the tuple’s start point, r.Ts−1). Second,
those pairs of start and end points are selected that form a valid constant interval. This
is the case if for each start point the closest end point that is greater than or equal to
the start point is selected. This can be expressed as a join followed by a generalized
projection.

Example 1. Consider Query QITA. The start and end points of the constant inter-
vals are given as s = {(DB , 1), (DB , 6), (DB , 13), (DB , 16), (AI , 4), (AI , 10)}
and e = {(DB , 0), (DB , 5), (DB , 12), (DB , 15), (AI , 3), (AI , 9)}, respectively. Sub-
stituting s and e in the expression for the partial result relation, we get g =
{(DB , [1, 5]), (DB , [6, 12]), (DB , [13, 15]), (AI , [4, 9])}. The aggregation functions
are F = {countCID/Cnt}, and the mapping function is θ(r) = {g ∈ g | g.D =
r.D ∧ g.T ∩ emp.T
= ∅}. To compute, for example, the aggregate value over the
constant interval [1, 5], the mapping function selects the two argument tuples r1 and r2.

264 M.H. Böhlen, J. Gamper, and C.S. Jensen

This definition of ITA preserves lineage: adjacent result tuples with the same aggre-
gate value are not coalesced if they are derived from different argument tuples (cf. the
first two result tuples of QITA for the DB department).

4.2 Moving-Window Temporal Aggregation

With moving-window temporal aggregation (MWTA) (first introduced in TSQL [7] and
later also termed cumulative temporal aggregation [8,12]), a time window is used to de-
termine the aggregation groups. For each time instant t, an aggregation group is defined
as the set of argument tuples that hold in the interval [t−w, t], where w ≥ 0 is a win-
dow offset. In some work [11], a pair of offsets w and w′ is used, yielding a window
[t−w, t+w′] for determining the aggregation groups. After computing the aggregation
functions for each aggregation group, coalescing is applied similarly to how it is done
for ITA to obtain result tuples over maximal time intervals.

Query QMWTA and its result in Fig. 1(c) illustrate MWTA. To answer this query, a
window is moved along the time line, computing at each time point an aggregate value
over the set of tuples that are valid at some point during the last three months.

While both ITA and MWTA partition the time domain into time instants, they differ
in how the aggregation groups for each time instant are defined.

Definition 3 (Moving-Window Temporal Aggregation). Assume the earlier defini-
tions of r, F, and A = A1, . . . , Ak , and let w be a non-negative window offset. Fur-
ther, let s = π[A,Ts]r ∪ π[A,Te +w/Ts]r be the start points and e = π[A,Ts −
1/Te]r ∪ π[A,Te +w−1/Te]r be the end points of the constant intervals. Then the
moving-window temporal aggregation for the aggregation functions in F over relation
r grouped by A and using window offset w can be expressed as GT [g, θ,F]r, where:

g = π[A, [Ts ,min(Te)/Te]](s ��[s.A = e.A ∧ Ts ≤ Te] e)
θ(r) = {g ∈ g | g.A = r.A ∧ [g.Ts−w+1, g.Te] ∩ r.T
= ∅}

The expression of MWTA is similar to that of ITA; the only difference is that the
effect of the window offset, w, must be considered both for the computation of the
constant intervals that are stored in the partial result relation, g, and in the mapping
function, θ. Intuitively, each argument tuple affects the aggregation result beyond its
own timestamp. Thus, to determine s and e to generate the timestamps of the partial
result tuples, the window offset, w, is added to the end points of the argument tuples.
The mapping function, θ, is modified similarly; the only difference is that the start point
of the partial result tuple is decreased by w in order to collect also argument tuples that
do not overlap with the timestamp of the result tuple, but have to be considered for the
computation of the aggregates.

Example 2. Consider Query QMWTA, which has a window offset of 3. The start
points of the constant intervals together with the grouping attribute values are
s = {(DB , 1), (DB , 6), (DB , 8), (DB , 15), (DB , 18), (AI , 4), (AI , 12)} and the
end points e = {(DB , 0), (DB , 5), (DB , 7), (DB , 14), (DB , 17), (AI , 3), (AI , 11)}.

Towards General Temporal Aggregation 265

Substituting s and e in the expression for the partial result relation, we get g =
{(DB , [1, 5]), (DB , [6, 7]), (DB , [8, 14]), (DB , [15, 17]), (AI , [4, 11])}. The aggrega-
tion functions are F = {countCID/Cnt}, and the mapping function is θ(r) = {g ∈ g |
g.D = r.D ∧ [g.Ts−2, g.Te]∩ emp.T
= ∅}. To compute, for example, the aggregate
value over the constant interval [6, 7], the mapping function uses the argument tuples
r1, r2, and r3.

4.3 Span Temporal Aggregation

For span temporal aggregation (STA), the time domain is first partitioned into prede-
fined intervals that are defined independently of the argument relation. For each such
interval, an aggregation group is then given as the set of all argument tuples that overlap
the interval. A result tuple is produced for each interval by evaluating an aggregation
function over the corresponding aggregation group.

Query QSTAand its result in Fig. 1(d) illustrate STA. The pre-defined intervals are
6-month periods.

Unlike in ITA and MWTA, the timestamps of the result tuples in STA are specified
independently of the argument data. Most approaches consider only regular time spans
expressed in terms of granularities, e.g., years, months, and days.

Definition 4 (Span Temporal Aggregation). Assume the earlier definitions of r, F,
and A = A1, . . . , Ak, and let p be a relation with a single attribute T that contains the
time intervals over which to report result tuples. Then span temporal aggregation can
be expressed as GT [g, θ,F]r, where:

g = π[A]r × p

θ(r) = {g ∈ g | g.A = r.A ∧ g.T ∩ r.T
= ∅}

In the expression of STA, we assume that the timestamps of the result tuples are
given in a relation p. This relation is joined with the argument relation, r, and projected
to the grouping attributes, A, and the timestamp attribute, T , to form the partial result
relation, g. The mapping function, θ, is the same as for ITA.

Example 3. Consider Query QSTA, which reports a result tuple for each six-month
period. The time intervals of the result tuples are then given as p = {([1, 6]),
([7, 12]), ([13, 18])}, which gives a partial result relation g = {(DB , [1, 6]),
(DB , [7, 12]), (DB, [13, 18]), (AI , [1, 6]), (AI , [7, 12]), (AI , [13, 18])}. The aggrega-
tion functions are F = {countCID/Cnt}, and the mapping function is θ(r) = {g ∈
g | g.D = r.D ∧ g.T ∩ emp.T
= ∅}. To compute, e.g., the aggregate value over the
period [1, 6], the mapping function uses the tuples r1, r2, and r3.

Note that STA reports a result tuple for all predefined intervals. If the aggregate group is
empty, the aggregate value is 0 or NULL. This behavior can be controlled by adjusting
the definition of g.

266 M.H. Böhlen, J. Gamper, and C.S. Jensen

4.4 Aggregation over Non-contiguous Aggregation Groups

In ITA, MWTA, and STA the aggregation groups are defined over contiguous subsets
of the non-temporal and timestamp domains. For the non-temporal attributes, each ag-
gregation group is defined for a single attribute value; and for the timestamp, it is either
divided into single time points, for ITA, or into contiguous sets of time points, for
MWTA and STA.

It is desirable to also be able to compute aggregates over sets of argument tuples that
are non-contiguous in some of the attributes. With general temporal aggregation, aggre-
gation groups can be specified where the time domain is grouped into non-contiguous
groups of time points and the timestamps of the tuples in an aggregation group do not
necessarily overlap with the timestamp of the corresponding result tuple. Similarly, the
aggregation groups need not be disjoint with respect to non-temporal attributes. We
illustrate these capabilities by means of two examples.

Example 4. Consider the following query: What is the total number of contracts in
each quarter, summed up over the past two years? In this query the argument tuples
that contribute to a result tuple are temporally non-contiguous and do not overlap with
the timestamp of the result tuple. This query can be formulated as GT [g, θ,F]emp,
where:

g = {([1, 3]), ([4, 6]), ([7, 9]), ([10, 12])}
θ(r) = {g ∈ g | g.T ∩ [emp.Ts mod 12 + 1, emp.Te mod 12 + 1]
= ∅}

F = {countCID/Cnt}
The partial result tuples simply specify the four quarters, whereas the mapping function
associates the argument tuples with the correct quarters.

Example 5. Consider the following query: For each department, what is the total num-
ber of contracts in the other departments? Here, the aggregation group of a partial result
tuple consists of tuples with a department value that is different from the department of
the partial result tuple. This query can be formulated as GT [g, θ,F]emp, where:

g = CI(π[r.D , s.T](r ��[r.D
= s.D] r/s))
θ(r) = {g ∈ g | g.D
= r.D ∧ g.T ∩ emp.T
= ∅}

F = {countCID/Cnt}
where CI is a regular expression that computes the constant intervals as for ITA. Note
that the aggregation groups are not disjoint. With each partial result tuple we associate
all argument tuples with a different department value.

5 Open Challenges in Temporal Aggregation

The foundations of most temporal database technology were built in the 1980s and
1990s. In retrospect, much of that research seems to have focused implicitly on meet-
ing the relational data management needs of administrative applications. (This paper’s

Towards General Temporal Aggregation 267

example database is a good representative of this class of application.) Over the last
decade, new types of applications and technologies have gained in prominence, includ-
ing ones that offer new challenges to temporal database technology and temporal aggre-
gation. We proceed to discuss challenges, most of which are due to these developments.

Update-Intensive Applications Based on Sampled Continuous Functions. The class of
update-intensive applications is gaining in prominence. For example, large populations
of vehicles may report their speeds and other sensed data. These data are samples of
continuous functions. For most times, a measured value of a function is not available.
The samples may have been reported according to a scheme that offers accuracy guar-
antees, or they may have been reported at regular time intervals. This is unlike the salary
attribute in our example, and this scenario suggests several challenges.

First, we may want to transform the sequences of samples to a representation where
we have a value for each point in time so that we are back in known territory. Issues
include how to accomplish this transformation, how accurately to do this, and how to
capture the inaccuracy.

Next, when applying an aggregation function to the sensed data, it becomes relevant
to take into account the inaccuracy of the data so that the inaccuracy of the result can be
reported. Likewise, when using the sensed data for defining the partial result relation,
the inaccuracy of the data is an important part of the equation.

Third, it may be observed that instant temporal aggregation and moving-window
temporal aggregation may return result relations that contain up to twice as many tuples
as the input relations, which seems counter to the goal of summarizing the data in
order to obtain an overview. It thus becomes of interest to be able to “aggregate an
aggregate.” We believe that it would be attractive to enable the users to control the trade-
off between result accuracy and result cardinality. For example, if the user specifies a
certain required accuracy, the aggregation should return the smallest number of tuples
needed to satisfy that accuracy.

Applications Involving Higher-Dimensional Temporal Data. Many application will in-
volve bitemporal, spatio-temporal, or n-dimensional data. Supporting aggregation for
such data offers several challenges. For example, with more than one dimension, it be-
comes necessary to define the 1+-dimensional equivalents of constant intervals. While
constant intervals are unique, such constant regions are not. The definition as well as
efficient implementation of maximal constant regions is a challenge.

Expressing General Temporal Aggregation in SQL. The SQL:2003 standard supports
window functions. With these, aggregates may be computed by sorting and scanning the
argument relation. While this is efficient, it does not support multidimensional group-
ings for which no single obvious ordering exists. Chatziantoniou’s EMF-SQL extends
the group by clause with grouping variables and introduces a such that clause
for constraining the grouping variables [5]. Neither approach supports the specification
of constant intervals, which is at the core of temporal aggregation. It would be inter-
esting to extend these approaches with support for time. A survey of approaches to
temporal aggregation in SQL-based temporal query languages is available [4].

268 M.H. Böhlen, J. Gamper, and C.S. Jensen

Extension to Non-Relational Data Models. Far from all data is stored in SQL databases.
Perhaps most notably, increasing amounts of data are stored in XML. Introducing tem-
poral support, including support for temporal aggregation, calls for reconsidering many
of the key data model and query language design decisions. For example: What is
the equivalent of a tuple? Is there something comparable to tuple-timestamping and
attribute-value timestamping? What are the implications of the hierarchical nature of
the model for timestamping and aggregation?

Efficient Evaluation Algorithms. The general model covered in this paper defines tem-
poral aggregation and offers a uniform way of expressing concisely the various forms
of temporal aggregation that have been studied in the past. However, the definition
does not imply an efficient implementation—a straightforward implementation would
require costly operations such as joins and scans of the argument relation (4 scans for
the delimiting points of the constant intervals and one for the aggregation). While ef-
ficient implementation of aggregation has been studied, solutions that integrate tightly
with state-of-the-art relational database technology are in order. One specific challenge
is to incrementally compute the partial result tuples as the argument relation is scanned,
to avoid more than one scan of the argument relation.

6 Concluding Remarks

The framework for aggregation that has been available in SQL for several decades and
that was formalized by Klug is very intuitive and has remained relatively unquestioned,
at least in the context of on-line transaction processing. We believe that it is time to
probe deeper. Specifically, the current framework is far from a panacea for all rela-
tional data management needs. We believe that aggregation can be rendered much more
expressive.

This paper has elaborated on that view, by presenting a general framework for tem-
poral aggregation, by illustrating how this framework accommodates existing forms of
aggregation, and by pointing out new challenges that invite others to engage in further
research—the general model proposed here is also not a panacea.

References

1. Ben-Zvi, J.: The Time Relational Model. Ph.D.thesis, Comp. Sci. Department, UCLA (1982)
2. Böhlen, M.H., Jensen, C.S., Snodgrass, R.T.: Temporal statement modifiers. ACM Transac-

tions on Database Systems 25(4), 407–456 (2000)
3. Böhlen, M.H., Gamper, J., Jensen, C.S.: Multi-dimensional aggregation for temporal data.

In: International Conference on Extending Database Technology, pp. 257–275 (2006)
4. Böhlen, M.H., Gamper, J., Jensen, C.S.: How would you like to aggregate your temporal

data? In: Intl. Symposium on Temporal Representation and Reasoning, pp. 121–136 (2006)
5. Chatziantoniou, D.: Using grouping variables to express complex decision support queries.

Data and Knowledge Engineering 61(1), 114–136 (2007)
6. Klug, A.C.: Equivalence of relational algebra and relational calculus query languages having

aggregate functions. Journal of the ACM 29(3), 699–717 (1982)

Towards General Temporal Aggregation 269

7. Navathe, S.B., Ahmed, R.: A temporal relational model and a query language. Information
Sciences 49(1-3), 147–175 (1989)

8. Snodgrass, R.T., Gomez, S., McKenzie, L.E.: Aggregates in the temporal query language
TQuel. IEEE Transactions on Knowledge and Data Engineering 5(5), 826–842 (1993)

9. Snodgrass, R.T. (ed.): The TSQL2 Temporal Query Language. Kluwer, Dordrecht (1995)
10. Tansel, A.U.: A statistical interface to historical relational databases. In: International Con-

ference on Data Engineering, pp. 538–546 (1987)
11. Vega Lopez, I.F., Snodgrass, R.T., Moon, B.: Spatiotemporal aggregate computation: a sur-

vey. IEEE Transactions on Knowledge and Data Engineering 17(2), 271–286 (2005)
12. Yang, J., Widom, J.: Incremental computation and maintenance of temporal aggregates.

VLDB Journal 12(3), 262–283 (2003)

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 270–279, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Distributed Systems and Automated Biodiversity
Informatics: Genomic Analysis and Geographic

Visualization of Disease Evolution

Andrew W. Hill1 and Robert P. Guralnick1,2

1 Department of Ecology and Evolutionary Biology, University of Colorado, Boulder,
Colorado, United States of America

2 University of Colorado Museum, University of Colorado, Boulder, Colorado,
United States of America

Abstract. A core mission in biodiversity informatics is to build a computing
infrastructure for rapid, real-time analysis of biodiversity information. We have
created the information technology to mine, analyze, interpret and visualize
how diseases are evolving across the globe. The system rapidly collects the
newest and most complete data on dangerous strains of viruses that are able to
infect human and animal populations. Following completion, the system will
also test whether positions in the genome are under positive selection or
purifying selection, a useful feature to monitor functional genomic charac-
teristics such as, drug resistance, host specificity, and transmissibility. Our
system’s persistent monitoring and reporting of the distribution of dangerous
and novel viral strains will allow for better threat forecasting. This information
system allows for greatly increased efficiency in tracking the evolution of
disease threats.

Keywords: Biodiversity Informatics, Geophylogenies, Google Earth, H5N1
Avian Influenza, Infectious Diseases, Human health, HyPhy, Viral evolution.

1 Introduction

A crucial task in biodiversity informatics is to build the computing infrastructure to
provide rapid, real-time discovery, access, visualization, interpretation, integration
and analysis of biodiversity information [1-5] at the ecosystem, species, and genetic
levels. We provide a working example of an automated framework that greatly
improves the speed of many preliminary analyses necessary to track lineages across
the landscape, and decreases the man-hours necessary to gain useful information from
current data warehouses. Our system currently targets combined genomic, geographic
and ecological information.

There are many good reasons for providing tools to examine the relationship
between geography and organismal and/or gene lineages. Although much information
can be gleaned from just the sampled distribution of organisms across the landscape
(e.g. species richness and diversity, predictive models of species distributions [6-9]),

 Distributed Systems and Automated Biodiversity Informatics 271

there are also limits. Patterns of species distribution have come about through
historical processes, and inferring these processes through examination of
morphological and molecular variation and sorting of this variation into distinct
lineages provides a much richer set of information about biodiversity [10] and
especially about how species may respond to future biotic and abiotic perturbations.
Biogeographical perspectives provide information about past and present patterns
necessary for making accurate predictions about the future.

Here we discuss an information system that focuses on tracking the evolution of a
particular type of biodiversity – viruses. We focus on viruses for three reasons: 1)
They represent a continued threat to human health and therefore monitoring of
changes to viral genomes and the spread of different viral strains is of practical
importance [11] 2) Viruses evolve very quickly, on the order of weeks to years as
opposed to thousand or millions of years, and we can therefore use modern
landscapes as a backdrop to monitoring viral evolution as opposed to reconstructed
past landscapes; 3) Viral genomes and proteomes are relatively simple and much is
known, from biomedical research, about how viruses infect organisms and which
changes in the genome have led to functional changes in the virus (e.g. which
mutations confer drug resistance) [12].

In order to document the continuing evolution of viruses, we have built an
information system that provides users with a continually updating view of the spread
of viral lineages. Here we focus on influenza A viruses but the system can be applied
to other biological infectious agents that are of concern (e.g. West Nile, Tuberculosis,
Malaria, etc). Influenza A viruses are a focus because they are a persistent human
health concern. H3N2 and H1N1 strains are responsible for human transmissible
seasonal influenza which affects hundreds of millions of people each year [13].
Another strain, the highly pathogenic H5N1 avian influenza, has been implicated as
the next potential human pandemic. If this virus was to evolve human transmissibility,
mortality could in the millions [14]. Determining containment strategies if an
outbreak were to occur is an area of very active exploration and all containment
strategies revolve around knowing where strains of the viruses are co-circulating.
Especially important is tracking how influenza A viruses are evolving resistance to
the main antiviral drugs that are used in prevention and treatment, and how drug
resistant strains are proliferating across the landscape.

1.1 A System for Automated Monitoring of Disease Evolution

Our information system is built around a set of operations that we want to rapidly and
automatically perform in order to provide near real-time results for monitoring
purposes. As well, automation frees researchers from performing many of the nece-
ssary but repetitive and time-consuming tasks of preliminary analyses. Fig. 1 provides
a summary view of the process and is explained in more detail in the Workflow
section below. The process begins with periodically scraping (at a rate consistent with
the generation of new data) of genomic data coming in from flu sequencing projects
occurring around the globe. In the last ten years, the number of influenza A flu
genomes has grown by orders of magnitude and that rate will likely continue or
accelerate into the future. From there, we automate construction of alignments and
phylogenetic analyses of these genomes, along with automated georeferencing of the

272 A.W. Hill and R.P. Guralnick

locations where the genomes were isolated. We also can delimit known mutations that
are of importance for tracking across landscape – in particular those mutations known
to either affect the transmissibility or pathogenicity of the virus, or those that lead to
resistance to antiviral drugs. Finally, we provide information on which types of
animals are carrying which lineages and how the virus might be transmitted among
different types of hosts. This information is particularly crucial for documenting
increased transmissibility of H5N1, now a predominately avian disease, from birds to
mammals.

Fig. 1. Disease data, currently genomic data stored at NCBI GenBank, is automatically
accumulated and passed through a set of analyses which are then compiled for download by
the user through a web-service. Currently our system runs alignments, outsources phylog-
enetic inference, and generates Keyhole Markup Language (KML) files that allow for
the visualization of disease spread. A user is then capable of downloading original
sequences, metadata associated with each sequence, trimmed alignments, phylogenies, and
complied/interactive KMLs.

Whereas other systems have been developed to provide web-enabled analysis of
both user assembled genomic data (http://supramap.osu.edu/supramap) and occur-
ence data (see ref. 15) the fundamental difference in our system is that it is an
automated reporting system particularly useful for rapid assessment and preliminary
analysis. By utilizing and integrating both influenza phylogenetic information (see
ref. 16 for automated phylogeny) and geographic information, we can project the
current evolutionary hypothesis for the virus onto a virtual global (e.g. Google
Earth™) and use the rich visual symbology available in the visualization tool to show
lineages and mutations of interest to the end user [17]. As well, we can use such a
system to track movements of lineages with potentially worrisome mutations to any

 Distributed Systems and Automated Biodiversity Informatics 273

user, whether a scientist, policy-maker, health officials, or an interested member of
the public. In the future, we will provide users with the means to extract useful
subsets of data from our ever-growing database of influenza A genomes in order to
generate new analyses for inclusion into our workflow. For example, if interested, a
user could request a dataset of, H3N2 isolates from between 2005 and present, and
then select a set of analyses that can be performed on that dataset. As well, each time
new genome data becomes available, the user-defined dataset and analyses will be re-
run and new results posted. All analyses will be stored so that ultimately the tool we
are developing could be a community workbench for disease monitoring. In addition
to these features, we include RSS feeds for individual datasets, allowing users to
receive automated notification updates. Such subscription services are not required for
updating Google Earth results since KMLs are already designed to update themselves
with the most recent information each time a user loads the file in Google Earth.

The numbers of analyses that can be automated can also be expanded depending on
user interest. We foresee several near future additions: First, we will include a channel
for user generated annotations and corrections. This would, for example, allow users
to improve the precision of sample locality for specific isolates, among other changes.
Second, we will include amino-acid sequences and alignments for each dataset. Third,
with the inclusion of amino-acid alignments, we plan to add several analyses
performed in the HyPhy software [18], including codon-level selection measures.
This would expand the degree to which a user could automate performing more
specialized analyses. For example, a user might want to ask whether there is evidence
for selection on mutations that lead to drug resistance for various different antiviral
drugs. Since it is known which positions on which segments lead to resistance to
different classes of drugs [19-21], the system can track those mutations and run
codon-based selection tests to determine if there is evidence for positive selection or
purifying selection, and how selection for resistance might be varying over time.

Below we discuss how we have constructed our automated monitoring system for
influenza A. We also discuss features we would like to implement in the future and
how the system can continue to grow both in terms of increased functionality and
flexibility.

2 Workflow Description

Our workflow is designed to accumulate, link, and reformat numerous sources
relevant to disease evolution and ecology. Currently we utilize only two main data
sources: NCBI’s GenBank for genomic data and metadata about viral isolation, and
external gazetteers (e.g. the BioGeomancer workbench (http://bg.berkeley.edu/latest/)
and the Getty Thesaurus of Geographic Names (http://www.getty.edu/research/
conducting_research/vocabularies/tgn/index.html) for place names. From these gen-
etic and geographic sources we can gain sufficient data to reconstruct both
relationships among the viral isolates and their location on the globe, and then
package that information for the user. Figs. 1 and 2 summarize the steps in creating
meaningful outputs that can be used for disease monitoring. It is important to note that
there are numerous places to utilize a distributed network of environmental and
biological data resources and methods of analyses. We touch on a few of the obvious
distributed resource and analysis tools that can be linked to our application below.

274 A.W. Hill and R.P. Guralnick

Fig. 2. The detailed data management and analysis workflow, where current elements are
numbered and future elements are given the N prefix, is as follows: (1) Genetic data and linked
metadata are collected from the GenBank ftp site. (2) Geographic place names for known
disease occurrences are accumulated and linked to geographic coordinates. (3) Nucleotide
sequences are aligned locally with MUSCLE and MAFFT multiple sequence alignment tools.
(4) Alignments are programmatically trimmed to remove leading and trailing columns with
only small amounts of sequences represented. (5) The alignments for each dataset are sent to
the CIPRES web service to construct phylogenetic trees. (6) Phylogenies and geographic
coordinates are combined to generate KML based framework for data visualization. Character
optimizations can also be performed at this point using Phylip, Paup, or other capable tools.
(N1) Environmental data. (N2) User generated dataset definitions, annotations, corrections.
(N3) HyPhy analysis suite or Datamonkey service.

2.1 Data Accumulation

Because our system is currently designed for influenza A, data scraping is generally
straightforward. Influenza genetic and associated data already organized and stored at
the NCBI ftp site. Therefore, data scraping is a simple programmatic process of
running cURL to transfer the files to a local repository. Following the transfer, the
files are parsed into a local PostgreSQL database (Fig. 1, Database A). The parsed
data includes the full genome sequence, date of collection, location of collection, the
host from which the genome was isolated, and any other metadata that might be of
interest. In order to allow for mapping, we then tie each isolate to the decimal degree
latitude and longitude for its best locality description. In order to link locality strings
to latitude and longitude, we currently use a hand assembled library of common
localities of influenza isolation. This process is simplified by the fact that localities
are a typical component of the influenza naming system. However, because these
localities are generally very coarse, in the future we will allow users to update
individual strain localities based on better available data such as latitude and

 Distributed Systems and Automated Biodiversity Informatics 275

longitude from primary literature. In addition, we will apply georeferencing best
practices and associated geographic uncertainty to all isolates (as described in ref. 15).
Pre defined datasets are all represented as Views (in some cases Materialized Views
are used) within the PostgreSQL database, such that all data from beginning to end
(Genbank data, alignments, trees, and KMLs) are stored in specific database tables
and combined dynamically on lookup. Currently, our datasets are focused on
complete genome sequences (those represented by all eight vRNA segments) for
common influenza subtypes.

2.2 Data Analysis

Data analysis follows two main channels: The first is the phylogenetic analysis. We
align the data for each dataset using MUSCLE (http://www.drive5.com/muscle/) [22]
and MAFFT (http://align.bmr.kyushu-u.ac.jp/mafft/software/) [23] services available
through the European Bioinformatics Institute (EBI; http://www.ebi.ac.uk/). Using
local PHP scripting, raw sequences are uploaded and completed alignments are
retrieved from the EBI web service [24]. Alignments are programmatically trimmed,
simply removing as many leading and trailing columns as necessary until a certain
threshold of the data is represented in the column. Trimmed alignments are stored in
the PostgreSQL database (Fig. 1, Database B) and uploaded to a remote phylogenetic
analysis service (http://www.phylo.org).

Remote phylogenetic analysis is run in much the same way as sequence alignment.
To generate maximum-likelihood phylogenies for each or datasets, we use the
RAxML [25] implementation available through a REST API service from the

Fig. 3. Global view of H5N1 spread. Drug resistant isolates (and ancestors) highlighted in
orange with non-resistant branches shown in white.

276 A.W. Hill and R.P. Guralnick

Fig. 4. Close-up view of several isolates. One, A/Thailand/1(KAN-1/2004), has been selected
and a pop-up window shows the details of this isolate. Details include several key mutations in
the viral genome as well as some information about its most phylogenetically closely related
neighbors.

Cyberinfrastructure for Phylogenetic Research (CIPRES) project. In the future, it will
be possible to include other potential user-specified analyses (e.g. parsimony or
Bayesian analysis) as well as provide bootstrap values for phylogenetic hypotheses.
After phylogenies are returned from CIPRES, we combine phylogeny and geographic
information to form the structure of the KML visualization of disease spread. In short
summary, each terminal taxon and hypothetical taxonomic unit (HTU) was assigned a
set of geographical coordinates and altitude. Altitude is based on the phylogenetic
depth of the node, where terminal taxa rest on the surface of the globe and HTUs are
shown floating above the globe – the farther towards the base of the tree, the higher
the altitude above the globe the HTU. For more information on the process of
creating these KMLs, see ref. 17. By utilizing metadata on isolation date and the
KML timespan function, we can add an explicit temporal component to the Google
Earth visualization. Linking the phylogeny with time through the built in capabilities
of Google Earth, we allow users to literally watch how the virus has likely evolved
across the landscape through time.

Figs. 3 and 4 show such two such visualizations. Figs. 3 shows a global visual-
ization of the spread of H5N1 avian influenza across the globe with a particular drug
resistant mutation (colored in orange) optimized onto the tree. Fig. 4 shows a pop-up
box that can be pulled up when a user selects any branch in the KML file. That

 Distributed Systems and Automated Biodiversity Informatics 277

pop-up box contains a rich set of information including all transformations that have
occurred on that branch, the host, if any of the mutations are of interest due to known
functional changes (e.g. increased transmissibility, drug resistance), and much more.
Exemplar KML files are available for download at http://biodiversity.colorado.edu

2.3 Deployment of Application as a Web Workbench

The application and analyses we are currently running for monitoring influenza
evolution is made available from our website, http://biodiversity.colorado.edu/. From
the website, users can download original datasets, making it possible for them to use
our preliminary analyses to formulate hypotheses and predictions, and then refine the
datasets to test those predictions. Also available are files from each stage of the
analysis, including alignment, RAxML trees, and KMLs. Furthermore, each stage and
dataset is available to users through RSS feeds that allow users to easily monitor
updates.

KML files will be the primary component for download from the website. As
discussed above, opening these KML files in Google Earth, users will be able to
explore the evolution of viruses across the globe and over time. Users will also be
able to use the KMLs to interact directly with each of the other components of the
analysis (GenBank record, alignment, and RAxML flat trees). Using the expiration
features built into KML, each time a user opens the file, the newest and most
complete dataset will be available for immediate interaction.

2.4 Future Workbench Directions

We foresee many future directions to expand our data visualization and analysis
workflow. This includes using analysis of codons to provide information about
functional changes to the virus. Such a process would be done by programmatically
reconstructing the coding sequence from nucleotide sequences, and analyzing those
through other programs developed elsewhere (i.e. HyPhy at http://datamonkey.org).
An area of particular interest for monitoring purposes is detection of codon-level
selection for known mutations that change how the virus functions. For example, it is
already known which mutations give rise to antiviral drug resistance in influenza A
populations, and monitoring those mutations may be of particular importance for
pandemic planning. Such selection analysis could be run either locally or remotely. A
local implementation would be to use the HyPhy software package which includes
multiple tests for codon-level selection. Alternatively, we could use a remote service
such as Datamonkey.org, to run many of the same analyses. In either scenario, we
will be able to provide useful evolutionary information regarding host use potential,
human transmissibility, or drug resistance.

Another direction we plan to take the system is incorporating more environmental
data and information on host range and dispersal capabilities. Such information,
when coupled to the genomic analyses described above, could be useful for better
forecasting predicting where viruses may be spreading [26] and how viral transmit-
ssibility may be increased through host switching events, especially for the
predominately avian H5N1 influenza. As well, coupling that information with charac-
teristics of the human landscape (human population centers, poultry farms, etc.) will
provide useful planning information in case of a pandemic.

278 A.W. Hill and R.P. Guralnick

3 Conclusions

By linking directly to the sources of sequence data and utilizing rapid alignment and
phylogenetic algorithms (e.g. MUSCLE, MAFFT, RAxML) we can provide near real
time visualizations of disease spread and evolution. Our application will allow
researchers, medical professionals and policy makers to make more informed
hypotheses and policies regarding the rapid spread and evolution of disease. Our
current online web workbench is rudimentary right now, allowing users access to
continually updating analyses of influenza evolution. Users may also select subsets of
analyses to run depending on regions and time-frames of interest. In the near future,
we will provide further flexibility and depth of analyses that can be run. All of our
next steps are based on core functions for disease monitoring in the hopes that such
applications can help us make informed decisions about how to respond to everything
from seasonal influenza to pandemic influenza.

Acknowledgements. We thank Meredith Wilson for her efforts on the local gazetteer
as well as design elements. Special thanks to the University of Colorado Museum and
the Walker Van Riper for their generous grant to support this work.

References

1. Blackmore, S.: Knowing the Earth’s Biodiversity: Challenges for the Infrastructure of
Systematics Biology. Science 274, 63–64 (1996)

2. Cotter, G.A., Bauldock, B.T.: Biodiversity Informatics Infrastructure: An Information
Commons for the Biodiversity Community. In: VLDB 2000, pp. 701–704 (2000)

3. Krishtalka, L., Humphrey, P.S.: Can Natural History Museum Capture the Future?
Bioscience 50(7), 611–617 (2000)

4. Sugden, A., Pennisi, E.: Diversity Digitized. Science 289(5488), 2305 (2000)
5. Wilson, E.O.: A Global Biodiversity Map. Science 289(5488), 2279 (2000)
6. Kress, W.J., Heyer, W.R., Acevedo, P., Coddington, J., Cole, D., Erwin, T.L., Meggers,

B.J., Pogue, M., Thorington, W.R., Vari, R.P., et al.: Amazonian biodiversity: Assessing
Conservation Priorities With Taxonomic Data. Biodiver. Conserv. 7(12), 1577–1587
(1998)

7. Funk, V.A., Zermologlio, M.F., Nasir, N.: Testing the Use of Specimen Collection Data
and GIS in Biodiversity Exploration and Conservation Decision Making in Guyana.
Biodiver. Conserv. 8(6), 727–751 (1999)

8. Joseph, L., Stockwell, D.: Temperature Based Models of the Migration of Swainson’s
Flycatcher Myiarchus Swainsoni Across South America: A New Use for Museum
Specimens of Migratory Birds. P. Acad. Nat. Sci. Phila. Sciences 150, 293–300 (2000)

9. Funk, V.A., Richardson, K.S.: Systematic Data in Biodiversity Studies: Use It or Lose It.
Syst. Biol. 51, 303–316 (2002)

10. Wheeler, Q.D.: Systematics, the Scientific Basis for Inventories of Biodiversity. Biodivers.
Conserv. 4(5), 476–489 (1995)

11. Morens, D.M., Folkers, G.K., Fauci, A.S.: The Challenge of Emerging and Re-Emerging
Infectious Diseases. Nature 430, 242–249 (2004)

12. Rappuoli, R.: From Pasteur to Genomics: Progress and Challenges in Infectious Diseases.
Nature Med. 10, 1177–1185 (2004)

 Distributed Systems and Automated Biodiversity Informatics 279

13. Simonsen, L.: The Global Impact of Influenza on Morbidity and Mortality. Vaccine 17(1),
S3–S10 (2000)

14. World Health Organization. Avian Influenza: Assessing the Pandemic Threat (2005),
http://www.who.int/csr/disease/influenza/WHO_CDS_2005_29/en/

15. Guralnick, R.P., Wieczorek, J., Hijmans, R.J., Beaman, R., the Biogeomancer Working
Group: Biogeomancer: Automated Georeferencing to Map the World’s Biodiversity Data.
PLoS Biol. 4(11), 1908–1909 (2006)

16. Hibbett, D.S., Nilsson, R.H., Snyder, M., Fonseca, M., Constanzo, J., Shonfeld, M.:
Automated Phylogenetic Taxonomy: An Example in the Homobasidiomycetes
(Mushroom-Forming Fungi). Syst. Biol. 54(4), 660–668 (2005)

17. Janies, D., Hill, A.W., Guralnick, R.P., Habib, F., Waltari, E.: Genomic Analysis and
Geographic Visualization of the Spread of Avian Influenza (H5N1). Syst. Biol. 56(2),
321–329 (2007)

18. Kosakovsky Pond, S.L., Frost, S.D.W., Muse, S.V.: HyPhy: Hypothesis Testing Using
Phylogenies. Bioinformatics 21(5), 676–679 (2005)

19. Suzuki, Y.: Natural Selection on the Influenza Virus Genome. Mol. Biol. Evol. 23(10),
1902–1911 (2006)

20. Gubareva, L.V., Kaaiser, L., Hayden, F.G.: Influenza virus neuraminidase inhibitors.
Lancet 355, 827–835 (2000)

21. Hay, A.J., Wolstenholme, A.J., Skelhel, J.J., Smith, M.H.: The molecular basis of the
specific anti-influenza action of amantadine. EMBO J. 4, 3021–3024 (1985)

22. Edgar, R.C.: MUSCLE: Multiple Sequences Alignment With High Accuracy and High
Throughput. Nucleic Acids Res. 32(5), 1792–1797 (2004)

23. Katoh, K., Misawa, K., Kuma, K., Miyata, T.: MAFFT: A Novel Method for Rapid
Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 20(1),
3059–3066 (2002)

24. Labarga, A., Valentin, F., Andersson, M., Lopez, R.: Web Services at the European
Bioinformatics Institute. Nucleic Acids Research Web Services Issue (2007)

25. Stamatakis, A.: RAxML-VI-HPC: Maximum Likelihood-based Phylogenetic Analyses
with Thousands of Taxa and Mixed Models. Bioinformatics 22(21), 2688–2690 (2006)

26. Peterson, A.T., Benz, B.W., Papeş, M.: Highly Pathogenic H5N1 Avian Influenza: Entry
Pathways into North America via Bird Migration. PLoSONE 2(2), e261 (2007), doi:
10.1371/journal.pone.0000261

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 280–291, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Visualisation to Aid Biodiversity Studies through
Accurate Taxonomic Reconciliation

Martin Graham, Paul Craig, and Jessie Kennedy

Centre for Information and Software Systems, Napier University, 10 Colinton Road,
Edinburgh, EH10 5DT, UK

{m.graham,p.craig,j.kennedy}@napier.ac.uk

Abstract. All aspects of organismal biology rely on the accurate identification
of specimens described and observed. This is particularly important for
ecological surveys of biodiversity, where organisms must be identified and
labelled, both for the purposes of the original research, but also to allow
reinterpretation or reuse of collected data by subsequent research projects. Yet
it is now clear that biological names in isolation are unsuitable as unique
identifiers for organisms. Much modern research in ecology is based on the
integration (and re-use) of multiple datasets which are inherently complex,
reflecting any of the many spatial and temporal environmental factors and
organismal interactions that contribute to a given ecosystem. We describe
visualization tools that aid in the process of building concept relations between
related classifications and then in understanding the effects of using these
relations to match across sets of classifications.

Keywords: Biodiversity, taxonomy, concepts, concept relationships, visualization.

1 Introduction

Consider a typical research scenario: a scientist is interested in analyzing the spread of
invasive species in a certain region [1]. They are aware of pertinent results in the
literature and have additional distribution records in their personal database, along
with access to other potentially relevant datasets on-line. The researcher needs to be
able to discover candidate datasets and be able to merge relevant and compatible
information from these varied datasets. Simplistically, datasets might be retrieved and
integrated on the basis of country and species name; however, just as country names
and boundaries change over time, so do the definitions attached to species names.
Unfortunately sufficiently sophisticated on-line taxonomic resources and tools to aid
the biologist are not currently available to allow them to address these problems in
legacy data sets or to adequately annotate new data sets. An essential step for
reusability and longevity of these data is the documentation of the contents of such
datasets, but effective documentation depends on the implementation of adequate
practices and information technologies [2; 3] as well as adherence to defined data
standards.

 Visualisation to Aid Biodiversity Studies 281

Ecological data may refer to organisms in a variety of ways: by their common
name, by some internal code, or by scientific name. Although appearing to be less
ambiguous than local common names, scientific names are also unstable and change
in meaning over time and between authorities. The name used in one ecological study
will reflect the classification context used by the authors at that time; datasets
produced at different times or by different workers in different geographical locations
might reference competing, if not conflicting, taxonomic standards [4; 5]. Hence the
inconsistent meaning of taxonomic labels used to identify species or higher-level
taxonomic groups necessitates semantic integration of the data for ecological
analyses. Furthermore, if the context or source for a recorded name is not captured as
part of the documentation of the dataset, it can be impossible for subsequent workers
to accurately resolve relationships among taxa identified simply by name.

The exact meaning of taxonomic names can change over time due to the lumping,
splitting, or redefinition of lineages as taxonomists revise their classifications [6], and
might also vary significantly between contemporary treatments owing to differences
in interpretation, (e.g. morphological versus genetic criteria) or circumscription
(i.e. the limits or extent of a given taxon). The valid scientific names applied to taxa
(i.e., species or other groups) in a given taxonomic classification are mechanistically
determined according to codified rules of nomenclature via the method of typification
and the principle of priority [7]. Because taxonomic opinion and classifications
evolve, the names that are properly applied to revised taxonomic concepts may be
identical to those used to refer to earlier and possibly quite different circumscriptions
of taxonomic entities. To share a name, two taxon circumscriptions need only include
the same type specimen. A further consequence of the application of the
nomenclatural codes to the results of taxonomic revision is that different names may
be used according to different taxonomic perspectives; yet refer to entities that appear
indistinguishable. As a consequence of these problems of synonymy and homonymy
it is impossible to integrate multiple datasets with any certainty of accuracy simply by
matching the names of taxa they contain. Thus, taxonomic names are a significant and
pervasive source of ambiguity when dealing with biodiversity data of mixed
provenance [8].

An example serves to illustrate the problem. Alternative taxonomies arise with the
discovery of new specimens and species, more information about shared traits and
newly inferred phylogenetic relationships, and even new analytical tools [9]. Consider
the example of gorilla taxonomy [10] (partially) in Fig. 1. Gorillas were first descri-
bed and classified by Reverend Savage in 1847, based on a population found in West-
Central Africa. He considered them similar to chimpanzees (named Troglodytes niger
in 1812 by E. Geoffroy St. Hilaire) and grouped them into the same Genus calling
them Troglodytes gorilla. However in 1816, Oken realized that the generic name
Troglodytes had already been used in 1806 by Vieillot to name the bird wren,
therefore the generic name for chimpanzees was changed to Pan, (strictly speaking
Savage & Wyman should’ve named gorillas Pan gorilla in 1847). However, in 1852
I. Geoffroy St. Hilaire re-classified the gorillas, separating them from chimpanzees
and renaming them Gorilla gorilla, the first use of the name for gorillas commonly
used today. In 1902, they were found in East-Central Africa and in 1903 Matschie
reclassified them and defined a new species of gorilla called G. berengei. Matschie
continued his splitting of gorillas, resulting in several species including G. graueri

282 M. Graham, P. Craig, and J. Kennedy

T.n

T

Matschie
1903

Etienne
Geoffroy
St. Hilaire
1812

G.g

G

Isidore
Geoffroy
St. Hilaire
1852

G.g G.b

G

P.n

P

Oken
1816

P.n P.g

P

T.n T.g

T

Savage &
Wyman 1847

Matschie
1914

G.g

G.j

G.g

G

G.d G.h

G.b

G.z
G.s

G.g

G

G.g.g G.g.b G.g.gr

Groves
1967

G.g

G

G.g.g

G.g.d

G.b.gr

Groves
2001

G.b

G.b.b G.b.?

Wickings et
al 2004

G

G.g.g

G.g.b

G.g.gr

G.g.?
P.n P.g

P

Tuttle
1967

T.n

T

Matschie
1903

Etienne
Geoffroy
St. Hilaire
1812

G.g

G

G.g

G

Isidore
Geoffroy
St. Hilaire
1852

G.g G.b

G

G.g G.b

G

P.n

P

Oken
1816

P.n

P

P.n

P

Oken
1816

P.n P.g

P

P.n P.g

P

T.n T.g

T

T.n T.g

T

Savage &
Wyman 1847

Matschie
1914

G.g

G.j

G.g

G

G.d G.h

G.b

G.z
G.s

G.g

G.j

G.g

G

G.d G.h

G.b

G.z
G.s

G.g

G

G.g.g G.g.b G.g.gr

Groves
1967

G.g

G

G.g.g G.g.b G.g.gr

G.g

G

G.g.g G.g.b G.g.gr

Groves
1967

G.g

G

G.g.g

G.g.d

G.b.gr

Groves
2001

G.b

G.b.b G.b.?

Wickings et
al 2004

G

G.g.g

G.g.b

G.g.gr

G.g.?

G

G.g.g

G.g.b

G.g.gr

G.g.?
P.n P.g

P

P.n P.g

P

Tuttle
1967

Fig. 1. Summary Gorilla Classifications showing genus, species and sub-species as classified by
some of the primate taxonomists since gorillas were first discovered in 1847 through to 2004

from the Congo in 1914 and many others (G. diehli, G. jacobi, G. schwarzi, G.
hansmeyeri and G. zenkeri). Other described species and sub-species not shown.

In 1967 Tuttle claimed that gorillas were related to chimps and put them back in
the genus Pan while Groves claimed that there was only one species of gorilla, G.
gorilla of which there were 3 sub-species: G. g. gorilla, G. g. graueri and
G.g.beringei but by 2001 with more recent evidence Groves had reclassified Gorilla
into two species (currently agreed by most experts in the field) and 5 sub-species: G.
gorilla, G. g. gorilla, G. g. diehli and G. beringei, G. b. beringei, G. b. graueri and an
un-named subspecies of G. b. However recent DNA analysis [11] is suggesting that
four distinct evolutionary specific units of gorilla exist although it is not clear if these
are species or sub-species. In addition to taxonomic treatments, if we consider the
popular field guides for example Mammal Species of the World, in the 1993 revision
it presented gorillas as one species G. gorilla with 3 subspecies, similar to Groves
1967. However in the 2005 edition they are adopting the Groves 2001 classification
with 2 species and 4 subspecies. Apes of the World on the other hand adopt Tuttle’s
definition of gorilla and recognize 1 species P. gorilla.

It should now be clear that when we use the taxonomic name G. gorilla there may
indeed be many different definitions of this name; what we refer to as taxon concepts
(the taxon name as defined by a particular taxonomist in a particular classification).
Just at species level in the gorilla example above we have 10 different taxon names
that are used with varying meanings across 8 different classifications, (i.e. we have 18
different taxon concepts which have been described by the authors). However the
current “accepted” treatment used varies between individuals and institutions, and
therefore biologists undertaking analysis of data which may have been collected
according to different field guides could end up with misleading results in their
analysis unless they were knew if it was about G. gorilla Groves 1967, as compared
to G gorilla Groves 2001 or P. gorilla. In databases and in the literature however
authors are frequently vague about what taxon concept they are referring to, and
simply cite a name such as G. gorilla thinking this makes it clear as to what they
meant (and for something as well known as gorillas who wouldn’t?). This can also
have serious repercussions, for example, in conservation if the red list (and associated
statute) cites G. gorilla (according to Groves 1967 but without explicitly specifying
so) as endangered and illegal to trade, then a poacher might be able to legally argue
that trading in G. berengei (according to Matschie or Groves 2001) is legal as it’s a
different species.

 Visualisation to Aid Biodiversity Studies 283

If ecological information is to be useful for future analyses, it should document
against what treatment the original authors of the data identified the organisms, and
long-term strategies to manage the legacy of ecological data must accept and
accommodate this constraint [12]. Minimally, a reference to the source publication
(e.g. field guide) used in making taxonomic identifications should be included, to
indicate the taxonomic concept being identified. New or annotated data should record
'taxon concepts' which capture the differences in names shown by the case studies in
Fig. 1, rather than simple scientific names. The adopted convention for referring to
taxonomic concepts is to cite the name sec. author [4] where "sec." stands for the
Latin secundum, meaning "according to" a particular (team of) author(s). It provides
(inter alia) a solution to the problems discussed. We can now refer to Gorilla gorilla
Savage & Wyman sec. Groves (2001), for example and use this as a reference for the
underlying definition. To this end, an abstract model, the Taxonomic Concept Schema
(TCS) for representing taxonomic concepts and their relationships has been developed
[13] and ratified by the International Biodiversity Standards (TDWG) as one of their
standards. This standard will facilitate merging ecological datasets collected at
different times and places by workers following varied taxonomic standards.

Research has been undertaken to determine the stability of names relative to
taxonomic concepts [14] using Koperski et al’s moss data set as example data [15]. It
was revealed that only 13% of Koperski et al’s taxa declared congruent relationships
to concepts with the same name in different classifications and made no other
relationships. Another 22% of the taxa had congruent relationships only, but this time
to homotypic synonyms, a further 20% had doubtful stability and 45% had various
incongruent relationship types, indicating instability between taxonomies.

Recent work [16] reports similar issues in weevil data, reinforcing the message that
researchers can only depend on a minority of names in one classification actually
meaning the same concept in another, and this ratio tends to diminish as time passes
between classifications. Thus with names unsuitable as cross-taxonomy identifiers,
concepts and concept relationships come to the forefront of linking and matching
between taxonomies. What are needed now are tools to enable taxonomists to
accurately mark up their data with concepts and relate new revisions to existing
legacy classifications so vital for long term biodiversity studies, and for other
specialists to be able to effectively use this data.

2 Visualisation

One approach for exploring and generating the structures formed through the concepts
and their relationships is Information Visualisation (IV) [17] – the graphical display
of and interaction with complex data sets. Essentially we have a set of multiple
hierarchies – the classifications we are attempting to reconcile – along with a set of
links that map between those hierarchies – which are the concept relations. To this
end we have developed two complementary visualizations for our data; the first,
TaxVis, allows users to explore relationships between multiple classifications, and the
second, Concept Relation Editor, allows concept relationships to be placed between
pairs of classifications.

284 M. Graham, P. Craig, and J. Kennedy

2.1 TCS Relationship Data

Both visualisations take TCS data in the form of an XML file that contains
descriptions of publications, names and relationships to generate a multiple tree
model with the relations and names acting as links between the publications (the
classifications). The relationships themselves are defined in the data set, and are
assumed to be the work of taxonomists whose names are associated with those
relations. Inferring further TCS relations from existing relationships is a subject that is
approached formally in [18] and discussed informally in [19]. In short we do not infer
relationships in our visualizations beyond enforcing reciprocality, i.e. if A includes B,
we make a relationship that B is included in A, similarly if C overlaps D, then D must
also overlap C.

Generally inferring relationships is problematic as it produces a relationship which
is only as strong as its weakest link i.e. if A is congruent to B which overlaps C we
can only conclude A has an overlap with C. Further, if A is included in B which
overlaps C, we cannot even infer the overlap, as the part of B which overlaps C may
not be the part which includes A. Add on top of that the difficulty of chaining
relationships defined by different authors who may well have different opinions and
the trustworthiness of inferred relations quickly deteriorates. Conceivably one
workable scenario is to chain congruent relationships by the same author, but so far
we leave further relation inferencing to the user to perform in the visualization.

2.2 TaxVis – A Visualisation for Exploring Multiple Classifications

We have developed a visual taxonomy explorer which allows matches between
classifications to be explored through concept relationships [19]. The visualization
itself consists of a number of types of different co-ordinated views applicable to a
classification data set, known as a multiform visualization [20], though in the
following discussion we will concern ourselves mainly with only one of the views in
particular – the multiple tree view [21]. In this view, classifications are displayed as
individual top-down hierarchies. Selections that are made in one hierarchy are
reflected in the other hierarchies giving a measure of overlap and distribution between
related classifications.

One of the most revealing tasks that can be performed in the application is to
compare the differences in matches made through naïve name matching to those made
through following concept relationships. Using a TCS version of Koperski et al’s [15]
moss concept data as input to the visualization we can show the numerous differences
generated by the two approaches for a sample genus, Eurhynchium. Matching
between just three of the classifications in the set, Koperski’s recent revision and
Smith’s 1980 and Mönkemeyer’s 1927 classifications, demonstrates the type of
differences that can be observed.

Firstly, when matching strictly by name, it becomes obvious even before
visualization that there will be no inter-genus relationships. The species X.a in one
classification cannot be matched to anything other than X.a in another classification.
At higher levels in a classification families, classes, and even genera themselves could
freely be repositioned in higher taxa without necessarily requiring re-naming – which
in itself can cause problems with homonymy as people assume the same name means

 Visualisation to Aid Biodiversity Studies 285

the same thing in different classifications. This is not so with species, a species moved
between two genera must take on the name of its parent genus as the first part of its
binomial name. Thus, when matching Eurhynchium across the two classifications,
from Koperski back to Mönkemeyer all that happens is that the Eurhynchium genus
representation is highlighted in both classifications, as seen in Fig. 2. Differences in
species naming and authoring means none of the Eurhynchium species match by
name. Smith’s 1980 classification fares better, being closer in time to Koperksi et al’s
revision, with several name matches highlighted, though there are still several nodes
that remain unaffected, indicating no name match.

Fig. 2. Eurhynchium taxa selected by name in Koperski have little impact on Mönkemeyer

By contrast when matching by concept relations a completely different picture
emerges, as seen in Fig. 3. Koperski et al’s Eurhynchium has been selected and the
visualization set to highlight matches by concept relationship. This reveals
relationships to four different genera in Mönkemeyer, including its interpretation of
Eurhynchium, so according to Koperski et al, their definition of the genus is made
from parts of those four different genera, indicating that integrating data collected
under these two classifications could be troublesome. Smith’s classification contains
three genera that overlap with Koperski et al’s treatment of Eurhynchium. However,
exploration of Eurhynchium’s species and varieties in Koperski et al shows that at a
lower level many of the relationships are congruencies, albeit between concepts with
different names. For example, in Fig. 3, the mouse is currently hovering over
Eurhynchium striatalum in Koperski et al, and links and a tool tip reveal this name in
Koperski is considered conceptually equivalent to a species of Isothecium in
Mönkemeyer and Smith’s classifications, though a differently named species in each.

286 M. Graham, P. Craig, and J. Kennedy

Fig. 3. The result of matching Koperski et al’s Eurhynchium genus and its contents by concept
relations reveal it is split between four genera in Mönkemeyer and three in Smith. A tool tip
currently displays relationships for the striatulum species and shows matches to species in the
Isothecium genus in the other classifications. A relation filter control is included as a key.

The moss set is simplified by the fact the relationships are all defined from one
classification (Koperski et al) to the other classifications in the data set, and are all
authored by the same people (Koperski et al). Other data sets may not assume these
constraints, indeed we have a Ranunculus data set where relations are concentrated
around two classifications and the relation set includes relations defined by two
differing authors. In these circumstances it can be useful to filter out relations defined
by one or more authors as taken as a whole the relationship set can contain apparently
contradictory findings as seen in Fig. 4, or as stated in the previous section can lead to
erroneous conclusions if relations defined by more than one author are chained
together to deduce other relations.

Thus, we can visually match and explore the relationships between a set of
classifications to reveal patterns that would be non-existent using naïve name
matching. Using this tool, ecologists with names collected under more than one
classification can match such data to be consistently based on just one of the
referenced classifications. Another alternative is to use a third-party classification as
seen in Fig.3 above, where data collected and named using Mönkemeyer and Smith’s
classifications can be integrated under Koperski et al’s classification, the example
above showing Isothecium filescens in Mönkemeyer and Isothecium striatulum in
Smith to be conceptually equivalent. Obviously on a singular basis, finding such
matches could easily be done by just processing the relevant TCS and XML, but the
visualisation allows users to view the stability of whole classifications by concept
relationships.

 Visualisation to Aid Biodiversity Studies 287

Fig. 4. Relations of R.occidentalis between Benson and Kartesz indicate an apparently
contradictory situation - congruent with another species but containing another in the same
classification. This is due to the relations being authored by two experts who have differing
opinions. The authors and the types of relation can be filtered in or out through a pop-up menu
(seen in the top left of the figure).

Fig. 5. The Concept Relationship Editor. Relationships are made by dragging links between
taxa in opposite-facing classifications.

2.3 The Concept Relationship Editor

The concept-based matching used in TaxVis is of course only as reliable as the quail-
ty of the relationship data used. In some cases there may be errors or contradictions,

288 M. Graham, P. Craig, and J. Kennedy

or just no relationship data defined at all A second visualization tool, the Concept
Relation Editor (CRE) [22], was prototyped to allow taxonomists to intuitively add
and edit their own relations between classifications. This could either be done for a
classification the user has authored to relate it back to previous classifications, or as a
third-party author inserting their own relationships between two pre-existing
classifications.

In the visualization, as shown in Fig. 5, a pair of classifications is selected from the
current data set and displayed facing each other on different sides of the application
window. A focus+context effect [23] is applied to the trees such that selected taxa
receive more space than unselected taxa, giving them room to display relationship
information or for rendering child taxa. This effect can be replaced with a more
traditional scroll and pan technique for large lists if the user so wishes.

Making relationships is simply a question of setting the author name and the type
of relationship through the toolbar menu at the top of the display, and then dragging
with the mouse a path between the taxa that are to be related. Links for selected
portions of the classifications are displayed, with icons to represent the type of
relationship and their permanency.

In this way taxonomists can link new classifications to legacy data, with the results
being stored back in the TCS XML data for other specialists to examine.

3 Usability Study

An informal user study was performed at the TDWG (Taxonomic Databases Working
Group) conference on the two visualizations to assess their usability. Users were
asked to complete sample tasks for either or both visualizations, depending on their
availability and interest. They were also asked to provide comments on any problems
they encountered as they proceeded, and also to give their general impression of the
visualization and any further enhancements they could think of for the tools. These
comments were recorded on MiniDisc audio equipment for later analysis. This “think-
aloud” [24] testing follows Nielsen’s [25] prescription for using relatively small
numbers of users, but making sure that they are representative users as opposed to a
random sample off the street. In this case as attendees at the TDWG conference we
could be sure our users were interested in working with taxonomic data.

Five volunteers tried the TaxVis visualization, attempting a scenario task based on
Koperski et al’s moss data set. Analysis of notes and audio recordings taken during
the sessions led to a list of 17 observations and user suggestions. Most of the user
suggestions and issues were based on taxonomic issues such as the incorrect
capitalization of author names, drawing from their expertise in the domain, whilst the
observations were mostly based on interface problems they encountered, such as
being tricked by misleading colouring into attempting to select non-existent concepts.

For the Concept Relation Editor we had 8 volunteers use the visualization and
attempt to complete a pair of tasks based on Ranunculus and Bird data sets. Again,
notes and audio recordings were taken during the sessions, leading to 42 observations
and user suggestions, many of which occurred with multiple users. The observations
ranged from purely interface issues such as a drop-down list initializing with an
empty selection, making users unsure as to its function, to issues that required the

 Visualisation to Aid Biodiversity Studies 289

domain expertise of taxonomists and taxonomic data managers to be flushed out.
Amongst these were terminology usage (classifications versus taxonomies), default
ordering of nodes (many classifications have what is known as a taxonomic ordering,
which is not the default alphabetical ordering typically used) and the automatic
downloading of pictures from the web to represent taxa (their accuracy was
questioned). A summary of the issues that were observed or commented on by three
or more users is given in the table below. For brevity we exclude the other 33 issues
that were picked up by only 1 or 2 of the participants.

The discrepancy in the number of issues found between the two visualizations can
be attributed mainly to the fact that the CRE tool had not been through any previous
rounds of similar testing, unlike TaxVis, which as a result had many of its more
glaring interface issues discovered and dealt with in previous incarnations. The
unequal number of volunteers (8 for CRE compared to 5 for TaxVis) may also have
contributed but as they are different interfaces we can’t really compare like with like
here. What we did notice in the CRE testing was the classic pattern of each additional
user finding a smaller and smaller set of unique issues in an interface, but with
reproduced issues reinforcing the findings of previous users. In any case, as pointed
out by [26], what matters is not so much the number of issues found or users

Table 1. Most common issues found in testing of the Concept Relation Editor

Observation Type
No. of
users

1. Brushing on nodes not showing relationship lines Observation *****
2. Direction of contains and contained relationships unclear

(one user did notice a set symbol was grey at one end of a
link and black at the other but didn’t know what this
meant)

Observation ****

3. User not equating ‘taxonomies’ with ‘classifications’, error
seen in labelling, ignoring button and exploring menu
options instead (see 35)

Observation
(use user’s
language)

4. Headers (name of classification) wanted on
taxonomy/classification selection panel – and on main
display (as well as / replacing the labels at the far left/right
of the screen)

User
suggestion

5. User doesn’t use scrollbar in lens mode, just moves mouse
up and down the classification and looks at the large tooltip
at the top of the screen

Observation ***

6. Deduced congruent relationships cannot be confirmed nor
deleted

Observation ***

7. Drop down list – selecting with mouse from list didn’t work
– had to press return on the keyboard

Observation ***

8. To make a relation requires dragging to the name text rather
than the bounding box of the node (i.e. doesn’t work when
released over the set symbols)

Observation ***

9. User looked to open new taxonomies under ‘File’, not ‘Edit’ Observation ***

290 M. Graham, P. Craig, and J. Kennedy

employed, but whether the findings are acted upon. In this case both TaxVis and CRE
underwent significant re-engineering to address as far as possible the problems found.

4 Summary

We have described how a pair of related visualizations, TaxVis and the Concept
Relation Editor, can be used to explore, follow and construct concept relationships
across a data set of multiple classifications.

Visualising such operations offers advantages over a purely textual results service
and text-based data entry approach. The most obvious being that relationships, both in
their creation and in later exploration, can be viewed in the context of other
relationships and concepts, and assessed in that light. This is important as concept-
based matching is inherently more complex than naïve one-to-one name matching. In
TaxVis, it is possible to select and follow relationships across multiple classifications
and to use the related concepts found as the starting point for further queries. In the
Concept Relation Editor, users can construct their own relationship sets and observe
the gradual building-up of their efforts.

Acknowledgments. Thanks to Robert Peet and Xianhua Liu for determining and
encoding the concept relationships in the Ranunculus data set. Also thanks to the
volunteers at the TDWG 2007 conference who gave their time and expertise to our
user testing.

References

1. Higgins, S.I., Richardson, D.M., Cowling, R.M., Trinder-Smith, T.H.: Predicting the
landscape-scale distribution of alien plants and their threat to plant diversity. Conversation
Ecology 13, 303–313 (1999)

2. Michener, W.K., Brunt, J.W. (eds.): Ecological Data: Design, Management, and
Processing. Blackwell Science, Oxford (2000)

3. Foster, I., Kesselman, C. (eds.): The GRID 2: blueprint for a new computing
infrastructure, 2nd edn. Elsevier Series in Grid Computing. Elsevier, Amsterdam (2004)

4. Berendsohn, W.G.: The concept of potential taxa in databases. Taxon 44, 207–212 (1995)
5. Pullan, M.R., Watson, M.F., Kennedy, J.B., Raguenaud, C., Hyam, R.: The Prometheus

Taxonomic Model. Taxon 49, 55–75 (2000)
6. Peterson, A.T., Navarro-Sigüenza, A.G.: Alternate species concepts as bases for

determining priority conservation areas. Conservation Biology 13, 427–431 (1999)
7. Minelli, A.: The status of taxonomic literature. Trends in Ecology & Evolution 18, 75–76

(2003)
8. Kennedy, J.B., Kukla, R., Paterson, T.: Scientific names are ambiguous as identifiers for

biological taxa: their context and definition are required for accurate data integration. In:
Ludäscher, B., Raschid, L. (eds.) DILS 2005. LNCS (LNBI), vol. 3615, pp. 80–95.
Springer, Heidelberg (2005)

9. Schuh, R.T.: Biological Systematics: Principles and Applications. Cornell University
Press, Ithica (2000)

 Visualisation to Aid Biodiversity Studies 291

10. Groves, C.P.: A history of gorilla taxonomy. In: Taylor, A.B., Goldsmith, M.L. (eds.)
Gorilla biology, pp. 15–34. Cambridge University Press, Cambridge (2003)

11. Wickings, E.J., Clifford, S.L., Anthony, N.M., Jeffery, K., Johnson-Bawe, M., Abernethy,
K.A., Bruford, M.W.: Gorilla mtDNA - Sequences Unravelled and Secrets Revealed.
Gorilla Journal 29 (2004)

12. Kennedy, J.: Exploiting Diverse Sources of Scientific Data. Final Theme report, e-Science
Institute (2007)

13. Kennedy, J., Bowers, S., Jones, M., Madin, J., Peet, R., Pennington, D., Schildhauer, M.,
Stewart, A.: http://www.tdwg.org/fileadmin/2007meeting/slides/
Kennedy_DataIntegrationIssuesSeek_abs231.ppt

14. Berendsohn, W.G., Geoffroy, M.: Networking taxonomic concepts – uniting without
unitary-ism. In: Curry, G., Humphries, C. (eds.) Biodiversity Databases - Techniques,
Politics, and Applications, pp. 13–22. CRC Taylor & Francis (2007)

15. Koperski, M., Sauer, M., Braun, W., Gradstein, S.R.: Referenzliste der Moose
Deutschlands. LV Druck im Landwirtschaftsverlag GmbH, Münster-Hiltrup (2000)

16. Franz, N., Peet, R., Weakley, A.: On the use of taxonomic concepts in support of
biodiversity research and taxonomy. In: Wheeler, Q.D. (ed.) The New Taxonomy.
Systematics Association Special Volume Series, vol. 74, pp. 61–85. Taylor & Francis,
Boca Raton (2008)

17. Card, S.K., Mackinlay, J.D., Shneiderman, B. (eds.): Readings in Information
Visualization: Using Vision to Think, 1st edn. The Morgan Kaufmann Series in Interactive
Technologies. Morgan Kaufmann, San Francisco (1999)

18. Thau, D., Ludäscher, B.: Reasoning about Taxonomies in First-Order Logic. Ecological
Informatics 2, 195–209 (2007)

19. Graham, M., Kennedy, J.: Visual exploration of alternative taxonomies through concepts.
Ecological Informatics 2, 248–261 (2007)

20. Roberts, J.C.: Multiple-View and Multiform Visualization. In: Erbacher, R., Pang, A.,
Wittenbrink, C., Roberts, J. (eds.) Visual Data Exploration and Analysis VII. SPIE,
vol. 3960, pp. 176–185. SPIE Press, Bellingham (2000)

21. Graham, M., Kennedy, J.: Combining linking & focusing techniques for a multiple
hierarchy visualisation. In: Banissi, E., Khosrowshahi, F., Sarfraz, M., Ursyn, A. (eds.)
IEEE Conference on Information Visualization, pp. 425–432. IEEE Computer Society
Press, Los Alamitos (2001)

22. Craig, P., Kennedy, J.: Concept Relationship Editor: A visual interface to support the
assertion of synonymy relationships between taxonomic classifications. In: Visualization
and Data Analysis. SPIE, vol. 6809, p. 12. SPIE Press, Bellingham (2008)

23. Cockburn, A., Karlson, A., Bederson, B.B.: A Review of Overview+Detail, Zooming, and
Focus+Context Interfaces. ACM Computing Surveys 41 (to appear, 2009)

24. Tognazzini, B.: User testing on the cheap TOG on Interface, pp. 79–89. Addison-Wesley,
Reading (1992)

25. Nielsen, J.: Guerrila HCI: Using Discount Usability Engineering to Penetrate the
Intimidation Barrier. In: Bias, R.G., Mayhew, D.J. (eds.) Cost-Justifying Usability, pp.
245–272. Academic Press Professional, London (1994)

26. Wixon, D.: Evaluating Usability Methods. Interactions 10, 28–34 (2003)

Author Index

Allam, Omnia 177
Atzeni, Paolo 227

Bacon, Jean 113
Bailey, Hazel 177
Bell, David 51
Bellomarini, Luigi 227
Bertino, Elisa 244
Bloodsworth, Peter 198
Böhlen, Michael H. 257
Brajczuk, Dale A. 2
Brenninkmeijer, Christian Y.A. 87
Bugiotti, Francesca 227
Buratti, Giacomo 165

Chakravarthy, Sharma 100
Chowdary, C.R. 40
Colquhoun, John 181
Craig, Paul 280

Dai, Chenyun 244
Dzolkhifli, Zarina 185

Engle, Jeremy T. 28

Feng, Jianhua 193
Fernandes, Alvaro A.A. 87

Galpin, Ixent 87
Gamper, Johann 257
Gianforme, Giorgio 227
Graham, Martin 280
Gray, Alasdair J.G. 189
Gray, Norman 189
Gray, W. Alex 177
Guralnick, Robert P. 270

He, Zhongtian 51
Hill, Andrew W. 270
Hong, Jun 51

Ibrahim, Hamidah 185

Jensen, Christian S. 257

Karjalainen, Merja 153
Kemp, Graham J.L. 153
Kendai, Balakumar 100
Kennedy, Jessie 280

Laforenza, Domenico 241
Leung, Carson Kai-Sang 2
Li, Guoliang 193
Lim, Hyo-Sang 244
Lin, Dan 244
Lin, Feng 193
Loukides, Grigorios 15

Madiraju, Praveen 185
Marinucci, Monica 1
Martins, João 153
Mazón, Jose-Norberto 203
McBrien, Peter 63
McClatchey, Richard 198
Michel, Sebastian 126
Montesi, Danilo 165
Moody, Ken 113
Morry, Dave 177

Neumann, Thomas 126
Nunes, Rui 153

Ounis, Iadh 189

Pankowski, Tadeusz 75
Pardillo, Jesús 203
Paton, Norman W. 87

Robertson, Edward L. 28

Schek, Hans-Jörg 207
Schuldt, Heiko 207
Sexton, Alan P. 139
Shamdasani, Jetendr 198
Shao, Jianhua 15
Skilton, Alysia 177
Smith, Andrew 63
Sreenivasa Kumar, P. 40
Swinbank, Richard 139

Trujillo, Juan 203

Vargas, Luis 113

Watson, Paul 181

Zhou, Lizhu 193

	Title Page
	Preface
	Organization
	Table of Contents
	The Power of Data
	Efficient Mining of Frequent Itemsets from Data Streams
	Introduction
	Related Work
	Mining with the COFI-Tree
	Mining with the DSTree

	Mining with Our Proposed DSP-Tree in a Limited Memory Space Environment
	Discussion
	Experimental Results
	Conclusions

	An Empirical Study of Utility Measures for k-Anonymisation
	Introduction
	Preliminaries
	Utility Evaluation Based on Anonymised Data
	Utility Evaluation Based on Application Scenarios
	Query Attribute Selection
	QID Value Selection
	The Impact of Dimensionality on Query Answering

	Conclusion

	HLS: Tunable Mining of Approximate Functional Dependencies
	Introduction
	Definitions and Conventions
	Related Work
	Searching Lozenges
	Characteristics of Lozenge Search
	Composition of a Lozenge
	Seeding Search with $maxF$ Rules

	Implementation
	Pseudocode
	Lozenge Ordering
	Lozenge Search Strategies

	Experimentation
	Statistics
	Memory Usage
	Computational Efficiency: $fixed RHS$ Vs. HLS
	Impact of Lozenge Ordering
	Top-Down vs. Bottom-Up

	Conclusion

	Sentence Ordering for Coherent Multi-document Summary Generation
	Introduction
	Related Work
	Framework
	Incremental Integrated Graph Construction
	Experimental Setup and Results
	Conclusions

	Schema Matching across Query Interfaces on the Deep Web
	Introduction
	Dempster-Shafer Theory of Evidence (DS)
	Combining Multiple Matchers Using DS Theory
	Individual Matchers
	Interpreting Results from Individual Matchers
	Combining Mass Distributions from Multiple Matchers

	Resolving Conflicts between Attribute Correspondences
	Experimental Results
	Dataset
	Performance Metrics
	Discussion on Experimental Results

	Related Work
	Conclusions and Future Work

	A Generic Data Level Implementation of ModelGen
	Introduction
	HDM and BAV
	Composite Transformations

	AutoMatch
	AutoTransform
	Example Transformation from XML to SQL
	Analysis and Experimental Results
	Related Work
	Conclusion

	Reconciling Inconsistent Data in Probabilistic XML Data Integration
	Introduction
	Reconciliation of Inconsistent Data
	XML Schemas and Instances
	Schema Mappings
	Queries and Answers
	Probabilistic XML Data Integration Setting
	By-Peer Semantics
	By-Sequence Semantics
	By-Subtree Semantics

	Conclusion

	A Semantics for a Query Language over Sensors, Streams and Relations
	Introduction
	Background, Motivation, Contributions
	{\sf SNEEql} Data Model
	{\sf SNEEql} Syntax
	{\sf SNEEql} Translation to a Logical Algebra
	Semantics of the {\sf SNEEql} Logical Algebra
	Tuple Stream Operators
	Window Stream Operators
	Window-to-Stream Converters

	Related Work
	Conclusions

	Load Shedding in MavStream: Analysis, Implementation, and Evaluation
	Introduction
	Related Work
	MavStream Architecture
	MavStream Server
	Input Processor
	Scheduler
	Operators and Buffer

	Design of the Load Shedder
	Location of Shedders
	The Runtime Optimizer
	Where to Shed
	How to Shed Load

	Implementation
	Random Load Shedder
	Semantic Load Shedder

	Experimental Evaluations
	Conclusions

	Event-Driven Database Information Sharing
	Introduction
	Motivating Scenario

	Background
	Event-Driven Architecture (EDA) and Publish/Subscribe
	PostgreSQL

	PostgreSQL-PS Design
	EDA Aspects
	Requirements

	PostgreSQL-PS Architecture
	Event Types
	Events
	Subscriptions
	Queues
	Advertisements
	Links

	PostgreSQL-PS Cooperative Event Distribution
	PostgreSQL-PS Programming Interface
	Database Programming Interface
	Application Programming Interface (API)

	PostgreSQL-PS Implementation
	Process Architecture
	Transactional Event Production and Consumption
	Guaranteed Event Delivery
	Scalability

	Related Work
	Conclusions

	Smooth Interpolating Histograms with Error Guarantees
	Introduction
	Related Work
	Spline Interpolation
	Data Representation
	Approximation Criterion
	Formalization

	Spline Construction
	Greedy Construction
	Optimal Construction
	Large Inputs

	Experimental Results
	General Setup
	Considered Approaches
	Real Data
	Effect on Queries

	Virtual Forced Splitting, Demotion and the BV-Tree
	Introduction
	Virtual Forced Splitting and the BV-Tree
	Forced Splitting
	Virtual Forced Splitting and the VFS-Tree
	The BV-Tree

	Reduction and the RVFS-Tree
	Algorithm Design for VFS-Trees
	Demotion

	Experimental Results
	Conclusions and Further Work

	A Functional Data Model Approach to Querying RDF/RDFS Data
	Introduction
	Data Models
	The Functional Data Model and P/FDM
	Mapping FDM onto RDF/RDFS
	RDF/RDFS Data Representation

	Query Processing
	SPARQL Query Structure
	Query Translation

	Discussion
	Conclusions

	Ranking for Approximated XQuery Full-Text Queries
	Introduction
	Related Work
	The Approximated Algebraic Framework
	Query Evaluation
	A Threshold Approach

	Structural Score Calculation
	Path Relaxations
	Comparison Relaxations
	Putting Things Together

	Conclusions and Future Work

	Role Based Access to Support Collaboration in Healthcare
	Introduction
	VOICCE Proposal
	Role Based Access
	Conclusion
	References

	A Peer-to-Peer Database Server
	Introduction
	System Architecture
	Evaluation
	Conclusions
	References

	Checking the Integrity Constraints of Mobile Databases with Three-Level Model
	Introduction
	Related Work
	The Three-Level (3-L) Model
	Conclusion
	References

	Finding Data Resources in a Virtual Observatory Using SKOS Vocabularies
	Introduction
	Controlled Vocabularies in Astronomy
	Finding Relevant Resources
	Conclusions

	Progressive Ranking for Efficient Keyword Search over Relational Databases
	Introduction
	Progressive Ranking for Efficient Keyword Search
	Experimental Study

	Semantic Matching for the Medical Domain
	Introduction and Previous Work
	SMatch Applied to the Medical Domain
	Results and Conclusion

	Towards the Automatic Generation of Analytical End-User Tools Metadata for Data Warehouses
	Introduction
	Automatic Generation of End-User Tool Metadata
	Conclusions

	The Hyperdatabase Project – From the Vision to Realizations
	Introduction
	The Driving Forces from a Database Perspective
	Information beyond Databases, Information Explosion

	The Hyperdatabase Vision
	Hyperdatabase Projects
	PowerDB: Realization of the Narrow Hyperdatabase Vision
	PowerDB OLAP.
	PowerDB XML Documents.

	Transactional Processes and OSIRIS: Foundations and Implementation of a Hyperdatabase Infrastructure
	Transactional Process Management.
	OSIRIS: A Complete Hyperdatabase Implementation.

	ISIS and DelosDLMS: Hyperdatabase Applications for Digital Libraries
	ISIS: Services for Content-Based Search in Multimedia Collections.
	=.28em plus .1em minus .1em DelosDLMS: A Next Generation Digital Library Management System.

	Conclusion and Outlook

	From Schema and Model Translation to a Model Management System
	Introduction
	Background
	Towards an MMS
	Model-Independent Operators
	Larger Scale and Complementary Issues

	Handling Evolving Scenarios
	Data Provenance and Quality Problems
	Data Provenance
	Integrity Constraints

	An Object-Oriented Scenario
	Discussion

	XtreemOS: Towards a Grid-Enabled Linux-Based Operating System
	References

	High-Assurance Integrity Techniques for Databases
	Introduction
	Related Work
	Architecture for Comprehensive Integrity Control Systems
	Integrity Requirements
	System Architecture
	Integrity Control Policies

	Trust Evaluation of Data Provenance
	Policy Compliant Query Evaluation Based on Provenance Confidence
	Confidence Policy
	Provenance Confidence Increment

	Conclusion

	Towards General Temporal Aggregation
	Introduction
	Aggregation Example
	General Temporal Aggregation
	Preliminaries
	A General Model of Temporal Aggregation

	Different Forms of Temporal Aggregation
	Instant Temporal Aggregation
	Moving-Window Temporal Aggregation
	Span Temporal Aggregation
	Aggregation over Non-contiguous Aggregation Groups

	Open Challenges in Temporal Aggregation
	Concluding Remarks

	Distributed Systems and Automated Biodiversity Informatics: Genomic Analysis and Geographic Visualization of Disease Evolution
	Introduction
	A System for Automated Monitoring of Disease Evolution

	Workflow Description
	Data Accumulation
	Data Analysis
	Deployment of Application as a Web Workbench
	Future Workbench Directions

	Conclusions
	References

	Visualisation to Aid Biodiversity Studies through Accurate Taxonomic Reconciliation
	Introduction
	Visualisation
	TCS Relationship Data
	TaxVis – A Visualisation for Exploring Multiple Classifications
	The Concept Relationship Editor

	Usability Study
	Summary
	References

	Author Index

